

g) recommences to not do it is sou

- 12 100

l of 5 L 33 100 Non-binding -> One is how to change RHS to final value, other is infinity (1E+30) Beyond the RHS allowable range we don't know what happens.

PROBABILITY: Number between 0 and 1 SIMULATION WITH EXCEL: =RAND() generates the number

=IF(Predicate, True Answer, False Answer) =COUNTIF(Range, Condition) → Counts NUMBER of Conditional Formatting: Styling cells based on smth Notation: P(A u B) = A or B, P(A n B) = A and B OUTCOME: What happens as result of experiment List of all possible outcomes: The SAMPLE SPACE EVENT = A SUBSET of the sample space Marginal = P(X). Joint = P(A + B)

AND	A	в	Total
Y	P(AY)	P(BY)	P(Y)
х	P(AX)	P(BX)	P(X)
Total	P(A)	P(B)	1

DECISION ANALYSIS: 3 ELEMENTS:

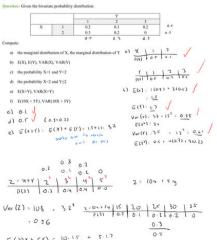
Decision (Choices, alternatives, actions) States of Nature (States), no control over

Consequences (Outcomes, Pavoffs, Results)

PAYOFF MATRIX: Three Decision APPROACHES GIVEN STATES → AND DECISIONS ^ v

PROFIT	x	۲	z	CON.	OPT.	REG.
d1	50	80	105	50	105	45 -
d2	70	85	90	70 -	90	60
d3	20	70	150	20	150 -	50

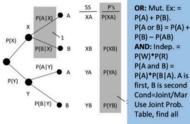
CONSERVATIVE: Looking for the worst possibilities FOR EACH DECISION CHOOSE WORST. Out of those best choose the HIGHEST OF THE MINIMUMS OPTIMISTC: Looking for the best possibilities FOR EACH DECISION CHOOSE BEST. Out of those best choose the HIGHEST OF THE MAXIMUMS **<u>REGRET</u>**: Looking for the DIFFERENCES in payouts STEPS

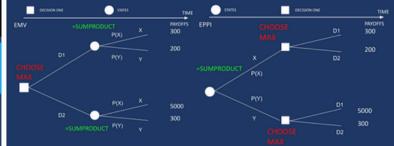

- **Pinpoint the HIGHEST PAYOUT FOR EACH** 1. STATE
- Write out the difference from EACH decision's payout to the best payout.
- CHOOSE THE HIGHEST REGRET FOR EACH DECISION
- In the original matrix, choose lowest R, value

CONTINUOUS VS. DISCRETE VARIABLES:								
DISCRETE: X=0,1,2,3. CONTINUOUS: 0 <= X < 4								
P(X=2) = 0.25 P(X=2) = 0								
P(X<=2	P(X<=2) = 0.75 P(X<=2) = 0.50							
P(X<2)	P(X<2) = 0.50 P(X<2) = 0.50							
RANDO	RANDOM VARIABLE: Numerical descriptions of the							
outcon	ne of an	experin	nent. PF	R. DISTR	BUTION	of X:		
x	X 5 6 7 8 9 10							
P(X)	.3	л	.2	.1	.1	.2		
- 1-4								

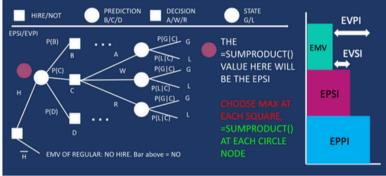
EXPECTED VALUE E(X):

 $\Sigma X * P(X)$. IF it's f(x), $\Sigma f(x) * P(X)$ With replacement E(X) = without r. E(X)VARIANCE $\sigma_2(X)$ or VAR(X): Σ [X – E(X)]² * P(X), E(X²)*[E(X)]² DIFFERENCE between each X and E(X) squared, multiplied by probability STANDARD DEVIATION σ(X): (sqrt (VAR(X))


UNITS: E(X), ST.DEV = Original, VAR = ^2 PROBLEM R.5


E(10x+ cy) = 10.1.5 + 5.1.7 15 + 8.5 Vor(2)= E(22) - 23.5 INDEPENDENT VS. DEPENDENT I: The outcome of FIRST EVENT DOES NOT AFFECT the outcome of the second

D: First event OUTCOMES HAVE AN EFFECT ON the second effect's probabilities


MUTUAL EXCLUSIVE: If A and B CANNOT HAPPEN SIMULTANEOUSLY. If P(A|B) = 0, they are mut. Ex. CONDITIONAL PROBABILITY: P(A|B). P(A) given B P(A|B) = P(AB) / P(B)BAYES THEOREM: P(A|B) = (P(B|A)*P(B))/P(A) With Replacement = Inde, Without = Depe

This is given no prob's + outcomes = UNCERTAINTY. With prob's and payoffs = RISK, can find EMV EMV = EXPECTED MONETARY VALUE = Σ (Payoff)*Probability = Weighted average of each decision

EXCEL: =RANDBETWEEN(LO, HI) produces INTEGER VALUE IN THAT RANGE, INCLUSIVE OR CAN USE =RAND(), AND IF(=G5<=1/5, "T", "F") are examples of ways to do this with excel CONSTANT TIMES VARIABLE E(C*X) $E(X) \text{ of } E(C^*X) \rightarrow E(C^*X) = C^*E(X)$ VAR(X) of $VAR(C^*X) \rightarrow VAR(C^*X) = C^2^*VAR(X)$ ST.DEV(X) of ST.DEV(C*X) \rightarrow ST.DEV(C*X) = |C|*ST.DEV(X)

ADDITION OF TWO RANDOM VARIABLES (Given T = A + B), Indep + Dep INDEPENDENT = P(X and Y) = P(X) * P(Y) holds for all X and Y. No = DEP. E(T) = E(A) + E(B) no matter independent or dependent VAR(T) = VAR(A) + VAR(B) if INDEPENDENT, does not hold if dependent

JOINT PROBABILITY DISTRIBUTION BETWEEN 2 RANDOM VARIABLES

AND	A	В	Total	Recall: $E(X - Y) = E(X) + -E(Y)$
¥.	P(AY)	P(BY)	P(Y)	If relationship between X and Y is NOT addition/subtraction, construct
x	P(AX)	P(BX)	P(X)	p.tree and use definitions of VAR,
Total	P(A)	P(B)	1	ST.DEV, E(X) and calculate manually

PROBLEM P.2

Question: A survey of MBA students obtained the following data on "Students' first reason for submitting an application to the school in which they enrolled in." Reason for Application

,		School Quality	School Cost	Other	Totals		
F	Full Time	421	393	76	890		
Enrollment	Part Time	400	593	46	1039		
	Totals	821	986	122	1929		

- a) If a student goes full time, what is the probability that school quality will be the first reason for choosing school? P(Q)F) = (41/2,1413) (840% 1424) O.473 P(QIF) :
- b) If a student goes part time, what is the probability that school quality will be the first reason for choosing school? (4001/414) PCQIPTJ: - 0.3550
- c) Let A be the event that a student is full time and let B be the event that student lists school quality as the first reason for applying. Are events A and B independent?

Star Ba 7.400 solution Function 4 \$(400) 000 system K=200 01 = objective optimal K+35 = 200+ 10,000 - 20 3 1400 10K+ 20T 9 1 200 O ptim al 7:400 into ž . K Plug D Solve 0 TSOPROFIT MUST NOT CROSS FEMILELE REGION Tenifor 2000 ł Budget 10 Nor 2 K,k Į is a profit est. COLNEL mal 1 days Feasible Region ś Date n 9 G Jemifer 30 = 600 10 = 400 붛 7 = 10,000 >=0, 7 >=0 harizantal 2 5 worked and hed ş ŝ ŝ 5 Budget: 10k + 20J 5 5 fund in tool to Short ĩ 24 ¥ V Non-negativity: Varia bles Max: K+ 4 of Max Kyle: " Jennifer: Object he Constraints к. + 1 slupe Find 6 4 Į, Θ 0 Ø How many Fuction 0 Objective The short we cancer we cancer and the source of the source 200 ţ Lines 50 ن ان mxtb Slope L soprofit 25 315 Fin J 17 SIOPE 6 PROBLEM R.3 on: Let X an Probability 0 1/8 1 3/8 1 1/2 Let T = X + Y. a) What is the distribution of b) What is the expected val c) What is the variance of 1 0 1/64 (1/6) (1/5) - 3/64 (1/6) (1/5) - 4/64 0 <u>×</u> 3 1/5) (3/5) , 3/ 6-(10)(10): 1/1-(4/5) (1/5) . 11/ 64 3 x (4/1) (1/2) , 4/64 (4/2) (1/2) , 12/64 2 2 (412) (415) . ulf4 Probabili 3160 0 6164 24164 16/64 ч b) (6164) = 2(17664) + 3(24/64) + 4 (16/64)

Cell	Name	Final Value	Reduced Cost	Objective Coefficient	Allowable Increase	Allowable Decrease
\$C\$11	Sauder Café – Henry Angus	13	0	2.75	0.2	0.05
\$0\$11	Sauder Café – Swing Bidg	3	0	2.95	0.05	0.2
\$5\$11	Sauder Café – Koerner Library	0	0.25	3.15	1E+30	0.25
\$C\$12	Tim Horton's - Henry Angus	9	0	1.5	0.05	0.25
\$D\$12	Tim Horton's - Swins Bida	0	0.05	1.75	1E+30	0.05
\$E\$12	Tim Horton's - Koerner Library	11	0	1.65	0.25	3.2
\$C\$13	Starbucks - Henry Angus	0	0.2	3.25	1E+30	0.2
\$0\$13	Starbucks - Swing Bidg	15	0	3.25	0.2	0.3
\$5\$13	Starbucks - Koemer Library	0	0.3	3.5	1E+30	0.3

1.....

	Constrain	Constraints										
2	Cell	Name	Final Value	Shadow Price	Constraint R.H. Side	Allowable Increase	Allowable Decrease					
	\$C\$14 Received - Henry Angus		22	3.05	22	3	13					
	\$0\$14	Received - Swing Bidg	18	3.25	18	10	15					
	\$E\$14	Received - Koerner Library	11	3.2	11	3	11					
	\$F\$11	Sauder Café Shipped	16	-0.3	16	15	3					
	\$F\$12	Tim Horton's Shipped	20	-1.55	20	13	3					
	66613	Starbucks Shinoad	15	0	95	16+30	10					

a. Suppose the cost of coffee from Tim Horton's – Koerner Library increased to \$1.85. What would the value of the target cell be after this ? \$1.85 - \$1.65 (original value) = \$0.20 11 (final value) x \$0.20 = \$2.20 \$125 (original target) + \$2.20 = \$22.8

d. Suppose the Sauder Café Supply <u>increased by</u> 12 cups. What would the value of the target cell be after this change? 2 increase => 12 x (-0.3) [Shadow Price] => \$25 [target va