

 $\frac{600 \text{ Customers}}{2000 \text{ Customers}} = 75 \text{ Customers}$ Average Inventory = Length of the Time

|BCWS (Total) – BCWC (Total)| x 100% BCWS (Total)

we are ahead of schedule

Norma

Crash

Multiple Flow Units

Using multiple flow unit analysis, we can look at average flow units

Ex. If product A amounts for 25% of our output. product B amounts for 25% of our output, and product C amounts for 50% of our output, then....

$$\alpha_A$$
 = 0.25 α_B = 0.25 α_C = 0.50

$$\alpha_{\text{simple}} = \frac{1}{3} = \frac{5}{15}$$

Product Mix Coefficients

Partner activity

You sell 2 types of cakes – decorated cakes and simple cakes.

You sell twice as many decorated cakes as simple cakes.

When customers ask for a simple cake, the cashier removes the cake from the freezer and sells it to the customer.

When customers for a decorated cake, the designer removes the cake from the freezer, decorates it, and bring it to the cashier to sell.

Removing a cake from the freezer takes 2 minutes,

selling a cake takes 3 minutes,

and decorating takes 10 minutes.

What are the product mix coefficients of a typical order?

$$\alpha_d = \frac{2}{3}, \alpha_s = \frac{1}{3}$$

What is the unit load for the two different resources (min/cake)?

						•		
Cashier	expected	time = (Ksimple ·	timesimple) + (a,	deconcertere x	Time for decorated case)	The setup Assume
			<u> </u> _3.	5	+ (2) = 3.66	 Each flow process, The weight
Designer	expected	time =	(a simp	le · time,	nule) + C	∝ deconated	+ Time for decorated)	The goal: Determine i
	•		(]	• 0)	+ 23.	12 -8		the sum of
								Weighted sh
		-	3.	.66,8				1. Among choose

The designer is bottleneck Q. What is the process flow time of the product mix?

15

52.5

20 × .75 = 15

50 × .25 = 12.5

32.5

50 × .5 = 25

42.5

Finish time

Late?

5

Process Time Flow: $(\swarrow_{simple} \times time_{simple}) + (\bowtie_{decorated} \times \frac{1}{3} \times 5 + \frac{2}{3} \times 15$ 1.5 1 6 minutes 4 time decorated) 2 5 minutes 1 5 3 8 minutes 2 Δ

												Custo	omer 1	L, 3, 2,	4						
Scheduling with Due Dates (Moore's Algorit	<mark>thm)</mark> g	Suppose y	ou are	taking	5 differ	ent c	lasses	s, call 1	them A	А, В, С,	D, and I	E.									
The setup:		You have d			0		in eac	ch clas	s.	ſ	Second	Attempt: So	chedu	le A-1	at th	e eno	l, and	A-2 D-2 C-2 E-2 5 2 3 1 12 13 14 14 5 6 8 7 10 12 16 13			
 Assume n flow units are in the process at time 0. Each flow unit has a pre-determined amount of time required to finisher process, and each flow unit has an assigned deadline. 		Each HW as If you misse	-				longe	r subn	nit the	нw.	Class & HV	V A-1	B-1	D-1	C-1	E-1	A-2	D-2	2 0	C-2	E-2
The goal:		The impact on your final grade from missing each HW is the same.					Days required to 5 finish		1	2	1	1	5	2	3	3	1				
Determine in which order the flow units should go through the process so t the number of units that are late (i.e., miss their deadline) is as few as possi	hat	Class & HW Days required to	A-1 5	A-2 5	B-1 C-1 1 1	C-2 3	D-1 2	D-2 2	E-1 E		Days until	due 5	5	6	7	7	12	13	1	L4	14
Moore's Algorithm:		finish Days until due	5	12	5 7	14	6	13	7 1	14	Order	9	1	2	3	4	-	-	7		-
 Find the EDD. Among all flow units up to and including the first one that is late 	,	/hat ordei	shou	ld you	do you	ır HV	V in o	order	to		Finish time Late?	e 21 Yes	1 No	3 No	4 No	5 No					
 choose the flow unit with the longest processing time and discar Repeat Step 2 until every flow unit is either on time or discarded Schedule all discarded flow units at the end in any order. 		minimize the number of late submissions? The <mark>earliest due date (EDD) schedule</mark> chooses the earliest de										dline. Third Attempt: Schedule A-1, C-2 at the end, and otherwise						erwis	se use	EDD.	
- Seneaue an alsonace now alles at the end in any order.		Attempt:				_						Class & HW	A-1	B-1	D-1	C-1	E-1	A-2 [D-2	C-2	E-2
How far ahead or behind schedule are we (as a percentage)?	Class & HW	A-1	B-1	D-:		E	-1	A-2	D-2	C-2	E-2	Days required to finish	5	1	2	1	1	5 2	2	3	1
The project is ahead of schedule by $\frac{[42.5-32.5]}{32.5} \times 100\% \approx 30.8\%$ How far over or under budget are we (as a percentage)?	Days require	d to 5	1	2	1	1		5	2	3	1	Days until due	5	5	6	7	7	12 1	13	14	14
The project is over budget by $\frac{ 52.5-42.5 }{42.5} \times 100\% \approx 23.5\%$	finish											Order Finish time	9 21	1	2	3	4	5 6	5	8	7
Activity Budget (\$) % % ACWC BCWS (\$) BCWC (\$)	Days until du	ue 5	5	6	7	7		12	13	14	14	Late?	Yes	No	3 No	4 No	5		No	Yes	No

10

15

17

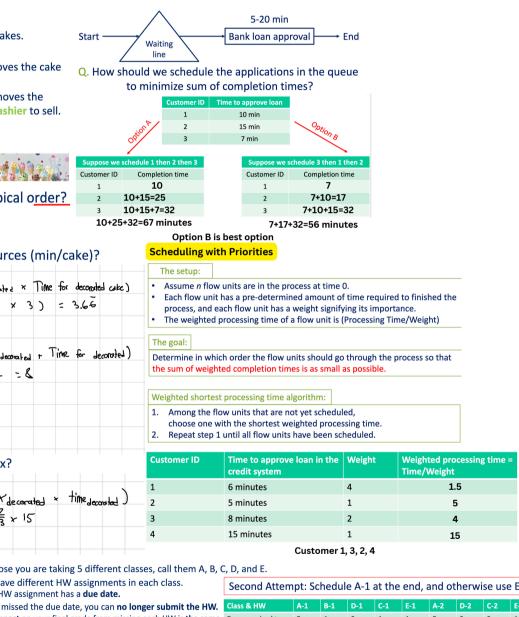
20

21

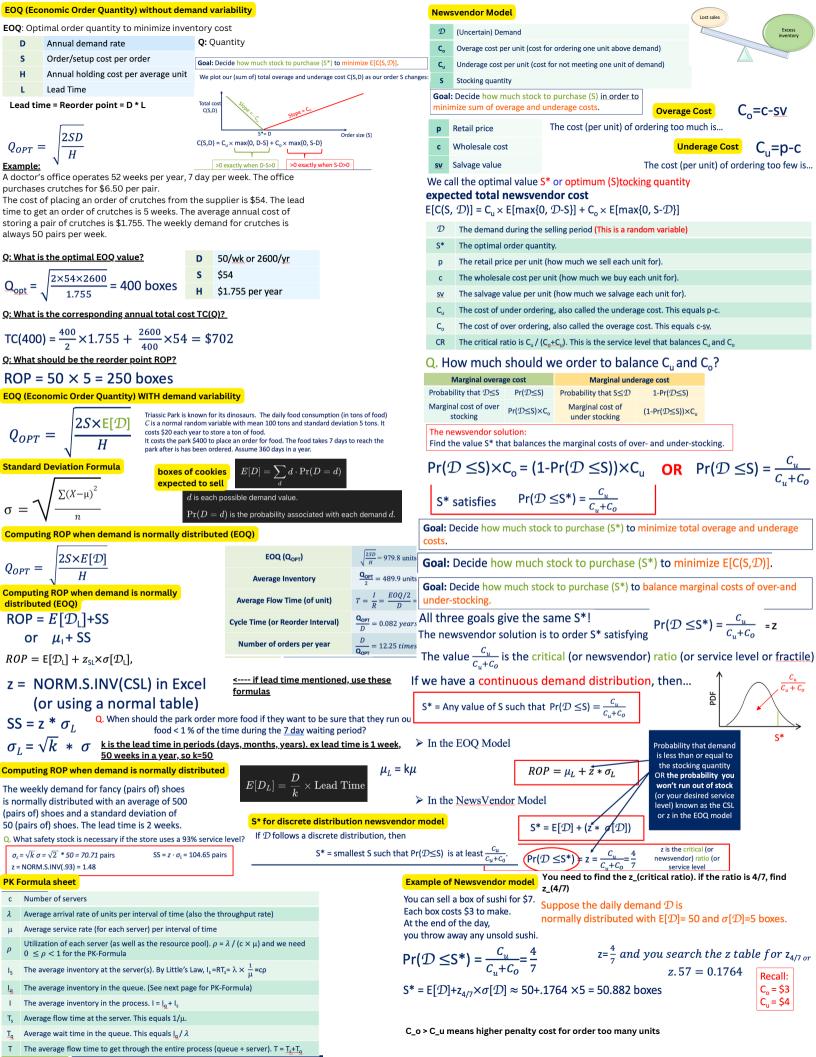
Scheduling to minimize sum of completion times

The setup:

- Assume *n* flow units are in the process at time 0.
- Each flow unit has a pre-determined amount of time required to finished the process.


The goal:

Determine in which order the flow units should go through the process so that the sum of completion times is as small as possible.


Shortest processing time algorithm:

- Among the flow units that are not yet scheduled. 1
- choose one with the shortest processing time.
- 2 Repeat step 1 until all flow units have been scheduled.

Consider a process for approving a bank loan.

Orde

Class 18: Forecasting (SMA, MAE)	Q. Which forecast has the l	lower MA	E?		Exponential Smoothing				
Forecasting is a statistical estimate of future demand, that can be used to plan current activities Forecasts are often based on past sales, while considering issues like seasonality, trends in demand, etc		950 900 850 750		A A A A A A A A A A A A A A A A A A A	$F_t = F_{t-1} + \alpha \cdot (A_{t-1} - F_{t-1})$	$= \alpha \cdot A_t$	₋₁ + (1-α)	• F _{t-1}	
Finance and Accounting: Forecasts provide the basis for budgetary planning and cost control. Budgetary planning and cost control.					$F_{t} = \alpha \cdot A_{t-1} + (1-\alpha) \cdot [\alpha \cdot A]$ $= \alpha \cdot A_{t-1} + (1-\alpha) \cdot \alpha \cdot A$			-	χ)·F _{t-3}]
Production and Operations: Use forecasts to make decisions involving capacity planning, process selection and inventory control.	The 6-week SMA has a lower MAE No long term trend. The 6-week SMA does not `fluctuate'	has a lo Long tern The 6-we	ower MAE n trend. ek SMA has a longer		= = $\alpha \cdot A_{t-1} + (1-\alpha) \cdot \alpha \cdot A$ This is why it is called <i>expone</i>			·α·Α ₁ +	(1-α) ^{t-1} · F ₁
Qualitative Forecasting methods					Larger values of α give more w Smaller values of α give more v				
Executive Judgment Based on experience and history	N				Exponential Smoothing:	-	Demand	ES α = .1	ES α = .9
all participants 3. Summarize the results and redistribut them to the participants along with	e better estimate in the sent that the effect of	se obs mov	ervations cau ving average 1	ses the to respond		1 2 3	650 678 720	500 515 531.30	500 635 673.70
4. Summarize again, refining forecasts and conditions, and again develop ne	averaging together a	≻ Wh	en there is a t	rend in the	$F_1 = 500$	4 5 6	785 859 920	550.17 573.65 602.19	715.37 778.04 850.90
Meetings of executives, participants						7 8	850 758	633.97 655.57	913.09 856.31
Quantitative Forecasting Methods Time Series Analysis	forecast with lower error				$F_2 = (1-0.1) \cdot F_1 + 0.1 \cdot A_1$ = 0.9 \cdot 500 + 0.1 \cdot 650 = 515	9 10 11	892 920 789	665.81 688.43 711.59	767.83 879.58 915.96
	ss 19: Exponential Smoothing and	d Weighted N	Moving Averag	e	$F_2 = (1-0.9) \cdot F_1 + 0.9 \cdot A_1$ = 0.1 \cdot 500 + 0.9 \cdot 650 = 635	12	844	719.33	801.70
				od t is	Q: How do we pick up l	Ū.		ls and se	asonal patterns?
Some common approaches • Moving averages • Exponential smoothing	$F_t = w_1 \cdot A_{t-1} + w_2 \cdot$	A _{t-2} + +	<u>w</u> _n ∙ A _{t-n}		Consider exponential smo Larger α closely follow re	ecent va	lues of	-	
					A lower α smooths over of Class 20: Supply Chain Ma				
Seasonal Variation x x x Linear Trend V	Veighted Moving Average:	A Week	B Demand	C 3-Week WM	The supply chain is defined the right place, in the right of A Su	quantity, a		time, at the	
$\begin{array}{c} x \\ x $	Assume that	1 2 3	650 678 720	N/A N/A N/A	Procurement)	•0	tions Manageme	t Consumer
1 2 3 4 Year	·	4	785	????			Í		╤╴╇
Forecasting notation:	Week 1 - w ₃ = .15	6	920		Raw Materials Inbound Logistics Goods in War	ehouse Manuf	acturing Out	oound Warehouse	Outbound Logistics Consumer
At The actual demand at time t.	Q: What is the 3-week	7	850 758						
Ft The forecasted demand at time t.	WMA for Week 4?	9	892		Upstream		e m a n d		
1. Simple moving averages A 2. Weighted moving averages	=696.2 B=675 C=690.8 D=694.80	11	789			-		_ [
3. Exponential smoothing For each method, we measure error using the mean absolute error.	/eighted Moving Average:	Week	Demand	3-Week WM/	Dairy cooperative Cheese factory	National I	OC Reta	iler RDC Re	tailer store End-customer
Q. How can we quantify a linear trend?									
Definition: The n-period simple moving average (SMA) at period t is					The definitions tend 1.Network – organis			· · ·	
A _{t-1} + A _{t-2} + + A _{t-n}	Assume that			694.80	suppliers (upstream)				
n This is one of the simplest forecasts.		-			includes the supplier				ed for production
This average can remove variability not associated to trends.		7	850	878.40	and final consumer o				1
n is the window length, which we can choose. Simple Moving Average: Example					2. Flow – movement of suppliers, manufactu				
Week Demand 3-Week SMA 6-Week SMA		•			3. Process – articulat				
2 678 N/A N/A					supply chain – <u>planni</u>				
4 785 682.67 N/A	F.=				More recently this ha	as includ	ed the re	verse flow	of materials at
							The s	upply cha	ain is actually a
									ly network of
9 892 842.67 815.33		• ·		•	form			onnected	operations s, suppliers and
11 789 856.67 866.5	· · · · · · · · · · · · · · · · · · ·		-				custo		
		· · ·	· · ·		e				twork is defined as f organizations
What is a good forecast?	observations nom the		-	-			tha ups	t are involvo tream and o	ed, through downstream
Definition: The forecast error at time t is $F_t - A_t$.								ages, in the cesses and	different activities that
Definition: The mean absolute error (MAE) at time T is $\sum_{r=1}^{T}$	Definition : Let <i>a</i> b	e in (0 1	1). We ca	llαthes	moothing factor. Let	E be	- pro	duce value	in the form of ervices delivered to
$MAE = \frac{\sum_{t=1}^{T} F_t - A_t }{T}$						_	the	ultimate co ristopher, 1	nsumer
	-1						1 B C C C C C C C C C C C C C C C C C C		

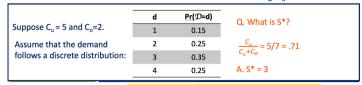
You have to determine the forecast error for both the 3 week WMA, and the ES MAE

-5

-10

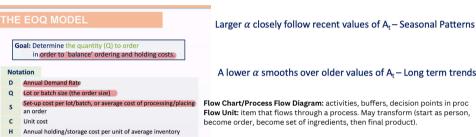
MAE = |5+5+20+10|/4 = 10

The Newsvendor Model - how do we balance overage and underage costs?


We place one order. This is different than the EOQ model.

If ${\mathcal D}$ follows a continuous distribution, then

S* = S such that $Pr(\mathcal{D} \leq S) = \frac{C_u}{C_u + C_0}$


If ${\mathcal D}$ follows a discrete distribution, then

How to pick up long term trends and seasonal patterns

Consider exponential smoothing.

Percent carrying cost (e.g., "interest" rate) i.

Usually, H = iC.

A lower α smooths over older values of A_t – Long term trends

Flow Chart/Process Flow Diagram: activities, buffers, decision points in proc Flow Unit: item that flows through a process. May transform (start as person, become order, become set of ingredients, then final product).

Flow time of an activity: Shortest amount of time in a process needed for any flow unit to complete an activity.

Flow time of a process: Shortest amount of time in a process needed for any flow unit to complete the entire process.

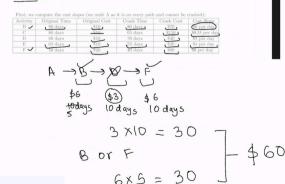
Unit load of a resource: time a resource needs to be used to complete one flow unit in the process. This equals the sum of activity times of activity times of activities using this resource.

Resources are "computer, worker 1, etc". Bottlenecks are ONLY resources.

Capacity rate of a resource: Max number of units that a resource can work on in a given time

Bottleneck resource: resource with LOWEST CAPACITY RATE.

Resource Pool: collection of resources that perform identical activities.


Capacity Rate of the process: The max output rate in a stable state.

Activity	Original Time			3	Q B	
A	15 days	\$50	-	-		
В	90 days	\$10	80 days	\$70		
С	80 days	\$10	65 days	\$150		
D	80 days	\$10	70 days	\$40		
E	65 days	\$10	55 days	\$20		
F	50 days	\$20	40 days	\$80		

What is the critical path(s) and the current duration of the project? (2 marks)

ree paths: ABEF, ABDF, ACDF, with lengths 220 days, 235days, 225 respectively. Hence roject duration is 235 days and ABDF is the critical path.

the minimum amount of *extra* money you need to spend to reduce the project duration

Other factors influencing Supply Chain Design

>

Global Production Networks Configuration

Demand is normally distributed

Government Incentives and Policy

Tax Breaks

- Tariff and non-tariff Barriers
- Trade Agreements

Legal

Intellectual Property Protection Rule of Law

Employment Standards

Network Effects

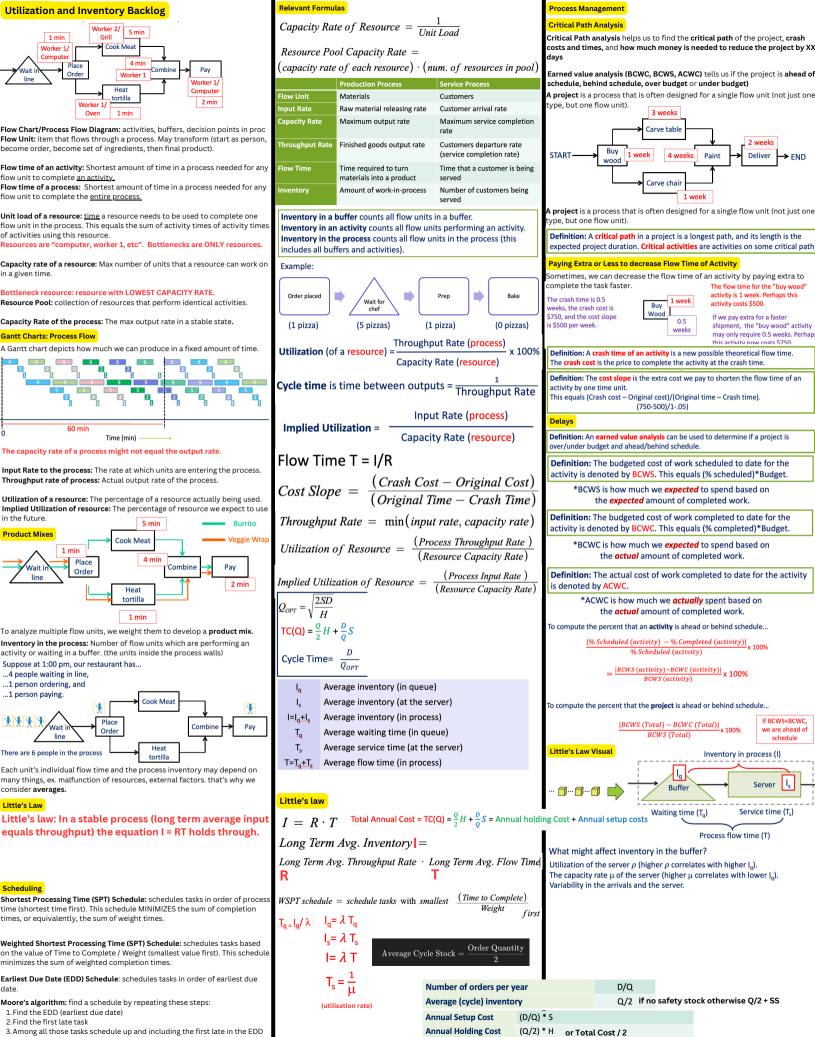
- Innovation Clusters
- Silicone Valley

The lead time is the time that it takes for goods to be shipped from the supplier The reorder point is the inventory level at which we place our order for the next cycle. A stock out is the event when we do not have enough inventory to meet demand.

The safety stock (SS) corresponding to a reorder point ROP is any extra stock above the expected demand during lead time that we use to avoid stocking out during lead time. We compute safety stock as SS = ROP - (Expected Demand During Lead Time) = ROP - E[DL].

The (cycle) service level corresponding to a reorder point ROP is the probability that we do not stock out during lead time if we place an order to the supplier when our at ROP. From the location of the second seco

If we substitute $\rho = \lambda/\mu$, then we see that


 $\mathbb{E}[\mathcal{D}_{L}] = L \times \mu \text{ and } \sigma[\mathcal{D}_{L}] = \sqrt{L} \times \sigma.$ $CSL = \Pr\left(z \leq \frac{\text{ROP} - \mathbb{E}[\mathcal{D}_{L}]}{\sigma[\mathcal{D}_{L}]}\right).$ $\frac{\mathcal{ROP} - \mathcal{E}(\mathcal{D}_{L})}{\sigma(\mathcal{D}_{L})}$

 $SS = ROP - \mathbb{E}[\mathcal{D}_L] = (\mu \times L + z_{CSL} \times \sqrt{L} \times \sigma) - (\mu \times L) = z_{CSL} \times \sqrt{L} \times \sigma.$

$$\frac{\rho^2}{1-\rho} \times \frac{(C_{\mathcal{A}})^2 + (C_{\mathcal{S}})^2}{2} = \frac{\lambda^2}{\mu(\mu-\lambda)} \times \frac{(C_{\mathcal{A}})^2 + (C_{\mathcal{S}})^2}{2}.$$

Crashing Activities

- 1. Crash the "cheapest" critical activity first (the one with the lowest cost slope).
- 2. When crashing critical activities, pay attention to the fact that the critical path may change as we proceed. 3. New critical paths may emerge and we may now have to crash other activities.
- 4. If we want to reduce the process flow time, then we have to reduce the length of all critical paths simultaneously.

Annual Holding Cost

Annual Total Cost

Annual Setup Cost + Annual Holding Cost

schedule

 I_{s}

- 3. Among all those tasks schedule up and including the first late in the EDD schedule, discard the longest one. This schedule minimizes the number of tasks completed after their deadline.