COMM 298 Formula Sheet

Bonds 1

Bond given Face Value (F), Coupon Rate (r), BEFORE YIELD TO MATURITY

$$P = I\left[\frac{1 - (1 + r)^{-n}}{r}\right] + F / (1 + r)^{n}$$

- "After 5 years, want to sell. what is price of bond?"
- "What is price of bond?"

a) Find the price of a bond with a face value of \$1,000 that pays 8% annual coupons and has 25 years until maturity. The current market rate of interest is 8% per year. 80 T-(1+008)-25 + (000 (1+0.08) e) Instead, suppose that <u>after 5 years</u> we sell the 8% coupon bond for \$829.73 when the market rate of interest is 10% (*recalculate the price*) $P_5 = 829.73 = 80 \begin{bmatrix} --(1.0)^{-10} \\ -0.1 \end{bmatrix} + \underbrace{(1.000}_{-0.1}^{-10} + \underbrace{(1.000}_{-1.1}^{-10} +$

original YTM = 25

P = price of bond

- I = interest payments \$(coupons)
 - r = market interest rate (can change over time)
 - F = face value of bond
- n = periods until bond matures

sell after 5 years P_5 = 80[(1-(1.10)^-20))/0.1] + 1000(1.1)^20 Yearly Coupon Rate = 80, 1000 * 0.10

Bond Price ONE YEAR

• Price of a one-year bond:

(1+0.08) = 1018.52

P = F + I / (1 + r)

Bond Price AFTER YTM MATURES

Capital Gain

Capital Gain = Face Value - Purchase Price

- "How does bond buyer earn money from buying and holding until maturity?
- Q: How does the bond buyer earn money from buying our bond and holding it to maturity? 1. Coupons: \$80 per year 2. Capital Gain: \$1000-829.73 = 170.27 (Sales price or Face Value - Purchase price)

Fx original value = \$1000 holding to maturity = \$829.73 \$1000 - \$829.73 = 170.27

Bonds 2

Given YTM, calculate bond price. BONDS ARE **USUALLY SEMI-ANNUAL**

 $YTM = r \times k$ market interest rate * amount of payments per year

To find YTM for 6 months (semi-annual), divide YTM by 2. • Is used for semi-annual bond calculations

- 1. Determine the \$ amount of the coupons.
- 2 Determine r, the effective periodic yield.
- 3 Use the bond valuation formula
- 1. \$1000 * 0.12/2 = 60 (coupon amount)
- 2. We know that YTM = 0.10, so semi annual is 0.05 3. We know that:
- n = 8, multiply by 2 because semi-annual

F = 1000

I = 60 (interest rate)

$$P = \frac{60[(1-(1.05)^{-16})/0.05]}{P} + \frac{1000(1.05)^{-16}}{P}$$

(use bond after maturity formula) • Coupon Rate STAYS Static

Don't confuse coupon rate with yield to maturity!)

- · Coupon rate: remains unchanged over the life of the bond. It determines the \$ coupon payments.
- · YTM: changes because market interest rates nge and the bond's risk can changed, which cause the bond price to change.

The YTM measures the average annual (APR) rate of return on the bond you would earn if you were to buy the bond today and hold it until maturity.

- nds in Canada
 No.
 No.</th
- - that makes the LHS = RHS.
 - 3. Use $YTM = r \times k$ to obtain the YTM.

1. Enter bond price on left side of bond equation

a. Note that IS SEMI ANNUAL, so n = 4 * 2 = 8

A 4-year \$1,000 bond with a coupon rate of 6%, paying coupons semi-annually, is priced at

\$1035.85) We wish to determine its YTM. First: set up the equation to determine r.

 $1035.85 = 30[(1-(1+r_{sa})^{-8})/r_{sa}] + 1000(1+r_{sa})^{-8}$

- YTM changes depending on the interest rate
- YTM buying the bond today and holding until maturity
- Coupon Rate- buying back then
- · Default premium: difference between the YTM on a risky bond and a government bond of similar maturity and coupon.
- · Bond rating firms rate the default risk of
- risky bonds. High investment grades are in the range from BBB to AAA. Junk (or speculative) bonds are rated below BBB.

KEY NOTES

If Market Rate == Coupon Rate, BOND PRICE SAME.

Bond prices & market interest rates inversely related.

- R goes DOWN -> bond price more valuable. • Selling at "Premium to Face Value"
- R goes UP -> bond price less valuable • Selling at "Discount to Face Value"
- Coupon Rate in APR Terms
- Bond's Face Value is normally \$1000

Perpetual Bonds

- Is a stream of interest payments.
- Begins one period from now.
- Never matures

Price of Perpetual Bond: P = I / R

How much Bond Price Increase/Decrease?

Increase/Decrease = (New Price - Old Price) / Old Price

When r fell from 8% to 6% The price of the perpetual bond increased by (1666.67-1250)/1250 = (33.33%) · The price of the 30-year bond increased by (1550.59-1225.16)/1225.16=26.56%

The price of the one-year bond increased by: (1037.74-1018.52)/1018.52 1.88%

Coupon Rate Calculation

· Solution: F = \$1.000 $CR = 6\% \checkmark$ k=2 $I = $1000 \times 0.06/2 = $30 \text{ every } 6 \text{ months}$

then... and the bond trades at

YTM less then coupon? People

YTM is more then the coupon?

People rather buy coupon, so

bond sells at cheaper price.

Current Yield = Annual Coupon / Current Price

would buy coupon for more, so at

a premium

par

a discount

F

· A Government of Canada bond has a face

paid each period?

value of \$1000, semi-annual coupon payments and a coupon rate of 6%. What is the coupon

CR = Coupon Rate (but static) k = Number of coupon payments per year (often 2 payments a year)

If...

YTM < CR | P > F

YTM = CR | P = F

YTM > CR | P < F

premium.

Calculate YTM (WILL ASK FOR SETUP ON EXAM)

The solution technique to use is:

- 1. Enter the bond's price on the left side of the bond pricing equation and enter all your inputs on the right hand side.
- 2. Use trial and error until you find the correct r

- 2. Enter inputs on the right side,
- **3.TRY TO FIND INTEREST RATE**
- 4. Use the YTM = r x k formula

(use bond after maturity formula)

A bond with a \$1,000 face value has an 8%) coupon rate and is trading at \$953.80. Current Yield = \$80 / \$953.80 = 8.39%

Current Yield

· Example:

- **KEY NOTES**
- Bid Price- price that a bond dealer is prepared to bid
- Ask Price- price that bond dealer is willing to sell at
 - YTM changes depending on market interest rate
 - Bond Prices are quoted as a percent of face value •
 - bonds with higher default risk have higher YTM • bond trading at \$1045.90 is 104.59 (% amount)
 - Coupon rate static

Bonds 3

Vocabulary

- Expected Rate of Return- Return that an investor wants for investment of certain risk
- Realized Rate of Return- What they actually get when they sell the bond. is **ANNUAL** realized rate of return.

Realized Rate of Return

YTM assumes that:

$$ROR = \left[\underbrace{(\text{selling price} + \text{FVRC})}_{\text{purchase price}} \right]^{\frac{1}{n}} - 1$$

1. You hold the bond until maturity. 2. You reinvest the coupons at that YTM.

FVRC = Future Value of Reinvested Coupons

Selling Price and Purchase Price of bond, is part of capital gain

Realized Rate of Return WITH MATURITY

- You pay \$679.12 to buy a <u>5-year</u>, \$1,000 face, 8% coupon, semi-annual payments bond with a YTM of 18%.
- · You hold the bond until maturity, and you reinvest the coupons in a savings account that pays 4% per year, compounded semiannually.
- What is your ROR?

Selling price = \$1000, since it's until maturity

TIP. ALWAYS DRAW A TIMELINE

- Need to convert the market interest rate to semi-annual • R = 0.04 / 2 = 0.02
- Coupon Rate stays the same (0.04 * 1000) = 20

What is the future value of the reinvested coupons?

· Using the realized rate of return formula...

$$ROR = \left[\frac{(\$1,000 + \$437.99)}{\$679.12}\right]^{\frac{1}{2}} - 1 = .161882$$

- 5 is from "5 year", and the rest is all compiled together from beginning
- This is less than your expected YTM when ON you bought the bond. Why?
- Did not re-invest coupons at original YTM. Reinvested at 4%.

Bond Yields

- Bond Yields affected by
 - Real rate of interest
 - Premium for expected future inflation
 - An interest rate risk premium
 - Default risk premium
 - Liquidity premium

Realized Rate of Return BEFORE MATURITY. NEED SALES PRICE

Holding Period of Return

· Using the realized rate of return formula...

$$ROR = \left[\frac{(\$1,000 + \$437.99)}{\$679.12}\right]^{\frac{1}{2}} - 1 = .161882$$
• Can you adjust the above to calculate your
HPR over 5 years?

$$HPR_{5y} = \left[\frac{(\$1,000 + \$437.99)}{\$679.12}\right]^{\frac{5}{2}} - 1 = 1.11743 = 111.74\%$$

\$679.12

Inflation Example 1

-Inflation

You want to do an MBA 8 years from now. MBA tuition is currently at \$36,000 per year and is expected to increase by 3% per year. If you earn 5% per year on investments, how much must you invest today to pay the first year's tuition?

Timeline 051

Real or Nominal?

- Most analysis we will do will assume nominal rates and will discount nominal cash flows. (Assume this unless otherwise indicated!)
- When one set of cash flows is presented in real terms, then other nominal cash flows and rates must be adjusted in order to compare, add or subtract the cash flows.
- As noted earlier, do not mix nominal and real or you will have garbage results!

Stock Valuation I

Debt

- Need to pay interest
- Cost of doing interest
- Tax deductible

<u>Equity</u>

- Ownership of company (stock)
- All equity firm cannot go bankrupt

<u>Dividends</u>

- residual cash flows of a firm
- board and management decide how much to give to shareholders

Shareholders

- Shareholders own a company
- After all obligations have been paid, shareholders get to decide the residual cashflow amongst themselves

Stock Price Valuation

$$P_{0} = Div_{1}(1+r)^{-1} + Div_{2}(1+r)^{-2} + Div_{3}(1+r)^{-3} + \dots$$

Stock price is the present value of all expected future dividends. Expression for the stock price is called the **dividend discount formula**.

Important Rule

Discount **nominal** cash flows using the **nominal** interest rate

and

Discount **real** cash flows using the **real** interest rate.

Providing for Retirement

- Expected inflation is a significant variable in retirement planning, tuition savings plans, choice of vocation, or any long term financial planning. Even a low rate of inflation can have a major negative effect on people who will receive relatively fixed nominal income or returns.
- From the Fisher equation, we see that with high inflation, the realized real rate may be negative!

Preferred Shares

- Pay a fixed periodic dividend
- Is usually non-voting
- Have priority over common shares
- Is a perpetuity

Common Share Valuation

- Lifetime of an equity investment is potentially infinite
- Cashflows on shares are not guaranteed, are uncertain
- No easy way to observe return that investors requite on common shares

Types of Dividend Payments

- 1.Zero Growth
- 2. Constant Growth
- 3. Non-constant Growth

Zero Growth Calculations

Example 1

Bankcity's perpetual preferred stock pays a \$2 dividend and is priced to yield 13 percent. What is the price of this issue according to the zero growth model?

-D = 2 (= 0.13 = 15.38

Constant Growth Calculations

Rearranging to solve for r as an expected return, we obtain:

$$r = \underbrace{\frac{DIV_1}{P_0}}_{\text{Homoson}} + g$$

We see that the expected stock return consists of the dividend yield plus the expected future growth in dividends.

Example

• Note that you need to differentiate between D_0 and D_1

Constant growth dividend example

A share of stock just paid an annual dividend of

\$2 per share. Dividends are expected to increase

at the rate of 5% per year forever. Future

dividends are expected to be:

 $)_{0} = - \$2$

Valuation example: constant dividend growth

A stock pays annual dividends $DIV_0 = 1.50 g = 4% per year r = 8.5%.

- a) What is the stock price? b) What if *r* rises to 10%?
- c) What if g rises to 5%? (assume r = 8.5%)
- higher discount rate -> lower stock price
- higher growth -> higher stock price

Gordon Growth Calculations (D_0 is not included in P_0

Gordon Growth Model -Ex vs Cum dividend

- Our constant growth model: $P_0 = \frac{DIV_1}{r-g} = \frac{DIV_0(1+g)}{r-g}$
- This is the price of a share that has just paid a dividend D₀. Tex
- It is also called the 'ex dividend price' and the more general formula (written in terms of D_t) becomes:

$$P_t^{ex} = \frac{D_{t+1}}{r-g} = \frac{D_t(1+g)}{r-g}$$

Gordon Growth Model - Summary

Formula assumes r>g, but what happens if r<g?

- If the required rate of return is less than the growth rate of dividends per share, the result is a negative value, rendering the model worthless.
- · If the required rate of return is the same as the growth rate, the value per share approaches infinity.

Gordon Growth Model -Ex vs Cum dividend

· If the dividend has not been paid, the share is trading 'cum dividend' and the dividend (Di) simply added to the ex-dividend price we calculated. • A firm's *cum-dividend* value is therefore: $PV_t^{cum} = \boldsymbol{D}_t + PV_t^{ex} = \boldsymbol{D}_t + \frac{D_t(1+g)}{r-g}$

which can be reduced to:

$$= D_t \left(1 + \frac{1+g}{r-g}\right) = D_t \left(\frac{r-g+1+g}{r-g}\right)$$

$$PV_t^{cum} = D_t \frac{1+r}{r-g}$$

Valuation example: negative dividend growth

Can g be negative?

If a company's dividends are expected to decline at a constant rate, then g will be negative.

Suppose dividends on a stock today are \$1.20 per share and dividends are expected to decrease each year at a rate of 2% per year, forever. If the required rate of return is 8%,) what is the value of a share of stock?

Gordon Growth Model - Summary

$$P_t^{ex} = \frac{D_{t+1}}{r-g} = \frac{D_t(1+g)}{r-g}$$

The next dividend is D_{t+1}; the most recent dividend is D_t (it has already been paid and thus is excluded from Pex).

• A firm's cum-dividend stock price is:

$$P_t^{cum} = \frac{D_t(1+r)}{r-g}$$

Pcum > Pex because it includes an additional dividend at t.

Assuming dividends grow at a constant rate, the constant-growth dividend model is:

 $P_{0} = \frac{DIV_{1}}{r-g} = \frac{DIV_{0}(1+g)}{r-g}$

where next period's dividend establishes the starting point, r is the required rate of return, and g is the estimated dividend growth rate.

Note: r must be > g!

Non-Constant Growth Model

Some firms' dividends grow at supernormal growth rates over a finite length of time.

The growth rate cannot exceed the required return indefinitely, but it certainly could do so for a number of years.

Price Earnings Ratio

$$\not\models$$
 Price-Earnings Ratio $ho/
ho$

• **Price-Earnings Ratio**: the ratio of price per share to earnings per share. Financial analysts often rely on price-earnings (P/E) ratios.

$$P/E = \frac{Price}{EPS}$$

• Earnings per share (EPS): net income divided by the current number of shares outstanding.

Ex	ample:	
Stock valuation	using P/I	E multiples

Values for subject firm	
Consensus EPS forecast	\$4.50
Current stock price	\$28.00
Values for peer group Median P/E	9.00
Use the P/E multiples method t the subject firm is over or under	to determine if er valued
relative to its peer group	

Supernormal Growth

• An investor's average annualized <u>realized</u> rate of return from holding a stock for a given number of years, *n*, is:

$$ROR = \left(\frac{\text{Selling price} + \text{FV of reinvested dividends}}{\text{Purchase price}}\right)^{\frac{1}{n}} - 1$$

• Note that the numerator reflects <u>realized</u> cash flows.

Realized return example

- Purchase price: \$22 🗸
- Sales price: \$27 🗸
- Holding period: 3 years \checkmark

$$\underbrace{\text{FVRD}}_{=\$3.15} = \underbrace{\$1[((1.05)^{3^{l}} - 1)/0.05]}_{\$3.15}$$

 $ROR = [(27 + 3.15)/22]^{1/3} - 1$ = 0.1108 = 11.08%

Realized return example

You buy a share of a company for \$22, hold the stock for 3 years, and receive a total of three annual dividends at the end of each year, each in the amount of \$1. You invest these dividends in a bank account which pays an effective annual interest rate of 5%. At the end of the 3 years, you sell the stock for \$27. What is your ROR?