
Relationship: association between two or more entities (ex. Tom Holland worked on
Spiderman)
Relationship Set: collection of similar relationships. (ex. collection of all movie people
who have worked in movies)

Entities can be pat of multiple entity sets (ex. Tom Holland worked on Spiderman
and isSonOf Tony Stark)
Can have attributes (ex. Role)

N-ary relationship set: set R which relates n entity sets from E_1 ... E_n;
each relationship in R involves entities e_1 E_1, ..., e_n E_n

Degree or “arity”: # of entity sets in relationship (binary, ternary, etc)
Ex. ternary relationship set (n=3). a "Supplies" relationship connects a Supplier
entity, a Product entity, and a Store entity

Cardinality ratio: the number of relationships in the set that an entity can participate
in. These are called cardinality constraints:
Total Participation: every instance of entity must be involved in relationship
Ex. If every employee must belong to exactly one department, then we say that the
"Employee" entity has total participation in the "Employee-Department" relationship. a
double line connects the two entities.
Key Constraints
Key constraints are shown with arrow in ER diagram:
one-to-one: entity in A is associated at most once with one entity in B
(ex. A: Student, B: student ID #)
The primary key of R (relation) is Primary Key of A + Primary Key of B
one-to-many: entity in A is associated with any number of entities in B
(ex. A: Mom, B: children)
One to many (A is one, B is many) is primary key of B
many-to-one: opposite of one-to-many
One to many (B is one, A is many) is primary key of A
many-to-many: entities in A can be associated with many entities in B
Many to many is Primary Key of A + Primary Key of B

IC: condition that must be true for ANY instance of database;
ex. domain constraints

IC’s specified when schema is defined
IC’s checked when relations are modified

Legal Instance of Relation satisfies all specified IC’s
DBMS does NOT allow illegal instances, can avoid data
entry errors with this

Candidate keys are possible when
No distinct tuples can have the same values for all1.

attributes in the key, and
 2. No subset of S is itself a key (according to (1)).

Conceptual Design
Entity: real-world object (ex. cat) described by attributes
Entity: An entity which can only be identified by considering key of another entity (a
belongs to) relationship. In ER diagram, has THICK lines.
Entity Set: Collection of entities (ex. All cats)

All entities in entity set have same set of attributes
All entity sets have keys

Domain: value type (ex. float, date, int)
Key: minimal set of attributes which can identify an entity in entity set.
Primary Key: main key to identify entity in entity set. has to be as minimal as possible.
(ex. cat_id)
Candidate key: One more kore keys in a relation
Super key: A key + zero or more additional attributes. (Ex. {sid, name}, or {CWL, major},
or {name, major, age})
Minimal Key: Smallest set of keys to identify entity in entity set.
Schema: The logic structure of database
Instance: The actual content of the database

the arrow points to the thing
there is only one of.

you can figure out the one from
the many, but not the many
from the one.

Participation Constraints: Whether a relationship has to be populated or not.
Important for updates.
Employees----[Manages]<-----Departments
Ex. When deleting, a new department must still have a manager
ISA Relationships: If we declare A ISA B, every A entity is a B entity
Reasons for using ISA:

Add descriptive attributes specific to subclass
Restrict entities that participate in relationship

Some ISA constraints we can’t express in ER diagram.
Overlap constraints: specializations can be

Disjoint: a superclass entity belongs to no more
then a single sublass
Has to EITHER be musician or actor, cannot be
both
Overlapping: subclasses may overlap
Can be BOTH musician or actor

Covering Constraints: Specializations can be
Total: A superclass entity must belong to some
subclass
Movieperson be musician or actor
Partial: some superclass entity may not be in any
subclass
Some movie people don’t have to be a part of a
subclass

Aggregation:
Having a relationship between relationships is forbidden.

Aggregation allows us to treat relationship set as entity set, letting us
participate in other relationships.

Choices for Good database design
entity vs. attribute
entity vs. relationship
binary or n-ary relationship
whether or not to use ISA hierarchies
whether or not to use aggregation

The (minimal) key of Evaluates is iid + course# + term.

Relational Models
Relational database: a set of relations
Relation: made up of 2 parts:
Schema : specifies name of relation, plus name and
domain (type) of each attribute.
e.g., Student (sid: char[20], name: char[20], address:
char[20], phone: char[20], major: char[20]).
Instance : a table, with rows and columns.
#Rows = cardinality
#Columns = arity / degree
Relational Database Schema: collection of
schemas in the database
Database Instance: a collection of instances of
its relations

Student(sid: integer, name: char[20], address:
char[20], phone: char[20], major: char[20])
Or, without the domains:
Student (sid, name, address, phone, major)

SQL Statements
CREATE TABLE Student
 (sid INTEGER ,
 name CHAR(20),
 address CHAR(30),
 phone CHAR(13),
 major CHAR(4))

CREATE TABLE Grade
 (sid INTEGER,
 dept CHAR(4),
 course# CHAR(3),
 mark INTEGER)

DROP TABLE Student
Destroys relation
student, schema
AND tuples are
deleted

ALTER TABLE STUDENT
 ADD COLUMN gpa REAL;

Schema of students is
altered with new attribute-
every tuple in current
instance is extended with
null value in new attribute

INSERT
INTO Student (sid, name, address, phone, major)
VALUES (‘52033688’, ‘G. Chan’, ‘1235 W. 33, Van’,
‘882-4444’, ‘PHYS’)

Insert a single Tuple
DELETE
FROM Student
 WHERE name = ‘Smith’

Delete tuples satisfying condition

Integrity Constraints

Key Constraints
Primary Key Constraint:

values for primary key must be unique
a primary key attributes cannot be null

For Unique Constraint:
values for a group of attributes must be unique (if they are not
null)
these attributes can be null

Key constraints are checked when new values are inserted, or
values are modified

Foreign Key Constraint
Foreign key: Set of attributes in one
relation used to
‘reference’ a tuple in another relation.

Must correspond to the primary key of
the other relation.
Like a ‘logical pointer’.

Referential Integrity

Translating Key Constraints
For many-to-many relationships, you create separate tables for each entity, and the
relationship.
For many-to-one relationships you combine the tbale for the relationship on the many
side with the table for the entity.
For one-to-one relationships, you pick one and combine it.

Translating Weak Entity Sets

Translating Participation Constraints

Lossless-Join Decomposition

Normal Forms
Functional dependency: one attribute determines another
through a functional dependency.
Ex. If Department determines Address but not Name, we say
that there’s a functional dependency from Department to
Address. But Department is NOT a key.
X determines Y.
if t1.X = t2.X then t1.Y = t2.Y
It is a statement about all allowable instances.

Must be identified by application semantics
Given some instance r1 of R, we can check if r1 violates some
FD f, but cannot tell if f holds over R.

Examples of Functional Dependencies

Trivial case is where:
FD: PostalCode -> Province
So PostalCode, House # -> Postal Code

Given some FDs, we can often infer additional FDs:

Normalization is the process of removing redundancy from data
Four important normal forms:

First Normal Form (1NF)
Second Normal Form (2NF)
Boyce-Codd Normal Form (BCNF)
Third Normal Form (3NF)
If a relation is in a certain normal form, certain problems are
avoided/minimized
Normal forms can help decided whether decomposition
(splitting tables) will help

1NF
Each attribute in a tuple has only one value (can’t be an array).
E.g., for “postal code” you can’t have both V6T 1Z4 and V6S 1W6

Why do we need it? Codd’s original version allowed multi-valued
attributes

Normalization

2NF
There are no partial key dependencies.
A relation is in 2NF if it is in 1NF and for every FD, X -> Y where X
is a (minimal) key and Y is a non-key attribute, then no proper
subset of X determines Y.

Ex. This address relation is not in 2NF

Finding Minimal Keys
Ex. Find all minimal keys for R(ABCD) where FDs are AB -> C and
C -> BD.

List only attributes that appear on the RHS of the FDs (only
what can be derived). Put on the right.

1.

2. List all the attributes that only ever appear on the LHS of an
FD (or do not appear in the FD at all, ex. things that have to be a
part of any key). put on the left.

3. List attributes that appear on the LHS and the RHS of the FDs
(not obviously required and may help you derive). Put in middle

4. Take the closure of the attributes in the left column.
{A}+ = {A}
Are all of the attributes there? If so, you have found a minimal
key. If not, start adding in attributes from the middle column to
see if you can determine all the attributes of the relation.

2NF
There are no partial key dependencies.
A relation is in 2NF if it is in 1NF and for every FD, X -> Y where X
is a (minimal) key and Y is a non-key attribute, then no proper
subset of X determines Y.

Ex. This address relation is not in 2NF

Boyce-Codd Normal Form (BCNF)
A relation R is in BCNF if X -> b is a non-trivial dependency in R,
then X is a superkey for R.

Ex. Whenever a set of attributes R determine another attribute,
it should determine all the attributes of R.

Check if all the left parts of the FD are a superkey. If they are,
then it is in BCNF, and if not, they need to be decomposed.

Decomposition
Decomposition of R replaces R by two or more relations.

Each new relation contains a subset of the attributes of R
(and no attributes not appearing in R)
Every attribute of R appears in at least one new relation.

Examples of BCNF

Examples of 3NF
A Relation R is in 3NF if:
If X -> b is a non-trivial dependency in R, then X is a superkey for R
or B is part of a (minimal) key.

Note: b must be part of a key not part of a superkey (if a key exists, all
attributes are part of a superkey)
Example:
R(Unit, Company, Product)
Unit -> Company
Company, Product -> Unit
Keys: {Company, Product}, {Unit, Product}

Rule: for all non-trivial functional dependencies in a
relation R of the form X->b, it must be the case that X is
a superkey of R or b is part of a key.

Minimal Cover G for a set of FDs F:
Closure of F = closure of G (i.e., imply the same FDs)
Right hand side of each FD in G is a single attribute
If we delete an FD in G or delete attributes from an FD in

G, the closure changes

