Conceptual Design —_m— Referential Integrity

Entity: real-world object (ex. cat) described by attributes SQU92 supports all 4 CREATE TABLE Grade
Entity: An entity which can only be identified by considering key of another entity (a Altribute @ options on deletes and (sid CHAR(S), dept CHAR(4),

bel(.)ngs to) relatiopship. In ER diagram, has THICK lines. @o@ g@ e updates. course#f CHAR(3), mark INTEGER,
i o aelanon-h\p

Entity Set: Collection of entities (ex. All cats) o Default is NO ACTION PRIMARY KEY (sid,dept,course#f),

o Al ent!ties in entity set have same set of attributes m Generslization!Specializstion (delete/updale is FOREIGN KEY (sid)

« Allentity sets have keys ey == A rejected) REFER ES Student(sid)
Domain: value type (ex. float, date, int) i Weak Entity M « CASCADE (also ON DELETE CASCADE
Key: minimal set of attributes which can identify an entity in entity set. updates/deletes all ON UPDATE CASCADE
Primary Key: main key to identify entity in entity set. has to be as minimal as possible. Aggregation -em-em tuples that referto the FOREIGN KEY (dept, course#)
(ex. cat_id) updated/deleted tuple) REFERENCES
Candidate key: One more kore keys in a relation (o2 2 2 — « SETNULL/ SET DEFAULT Course(dept.course#)
Super key: A key + zero or more additional attributes. (Ex. {sid, name}, or {CWL, major}, (referencing tuple value ON DELETE SET DEFAU

key constraints EE—— is set to the default

or {name, major, age}) foreign key value)

Minimal Key: Smallest set of keys to identify entity in entity set.

ON UPDATE CASCADE);

Schema: The logic structure of database Entities Relational Models Translating Key Constraints
Instance: The actual content of the database yintas Relational database: a set of relations For many-to-many relationships, you create separate tables for each entity, and the
Relationships. Relation: made up of 2 parts: relationship.
@ Schema: specifies name of relation, plus name and For many-to-one relationships you combine the tbale for the relationship on the many
A @ Key constraints ..@.. el domain (type) of each attribute. side with the table for the entity.
@ m’ Total parbclpatlan — = e.g., Student (sid: char[20], name: char[20], address: For one-to-one relationships, you pick one and combine it.
char[20], phone: char[20], major: char[20]). =

Relationship: association between two or more entities (ex. Tom Holland worked on Instance : a table, with rows and columns. @
Spiderman) #Rows = cardinality Country Has Gkl
Relationship Set: collection of similar relationships. (ex. collection of all movie people #Columns = arity / degree {one) (one)
who have worked in movies) Relational Database Schema: collection of Assume you went with Country(coName, caName) and all

* Entities can be pat of multiple entity sets (ex. Tom Holland worked on Spiderman schemas in the database attributes have type Char(20) and we're not creating a separate

and isSonOf Tony Stark) Database Instance: a collection of instances of relation for Capital. Write the SQL DDL that you would need for

¢ Can have attributes (ex. Role) its relations il this relation.
N-ary relationship set: set R which relates n entity sets fromE_1 ... E_n; column name CREATE TABLE Country(
each relationship in R involves entitiese_1£E_1, ..., e_.n€E_n Example of a Relation Instance country-name CHAR(20) PRIMARY KEY,

« Degree or “arity”: # of entity sets in relationship (binary, ternary, etc) It]:llhn/_.ls‘u‘ilcm capital-name CHAR(20),

« Ex. ternary relationship set (n=3). a "Supplies" relationship connects a Supplier name sid |name addl’ess/l phone] major | UNIQUE capital-name € needed for one-to-one constraint

entity, a Product entity, and a Store entity 90111120|G. Jones | 123 ‘;’m]’ | ss9-s44 | cPsc |J M

Cardinality ratio: the number of relationships in the set that an entity can participate g, — 12020 E 1855, | 1 Canada
in. These are called cardinality constraints: row, —, [P200L200 |G Sonkh, |, | eratid | RATH | United States ano
Total Participation: every instance of entity must be involved in relationship resord 94001020| A. Smith |32 E 1875, | 222021 | CpSC | Meakco Ottanea
Ex. If every employee must belong to exactly one department, then we say that the i = | | |
"Employee" entity has total participation in the "Employee-Department" relationship. a:::::m SN ey | | L | Translatlng Part|C|pat|on Constraints

double line c.onnects the two entities. - degree/arity = 5: Cardinality = 4

Key Constraints))) . Orger of r;:rs isn't impcrtatl:'lzc ’ O @ D> o ©
Key constraints are shown with arrow in ER diagram: - Order of attributes isn't important
one-to-one: entity in A is associated at most once with one entity in B (except in some query languages) N
(ex. A: Student, B: student ID #)

The primary key of R (relation) is Primary Key of A + Primary Key of B [
one-to-many: ent}ty in A is associated with any number of entities in B l char[?ol, phone: char'[20], major: char[20]) o Every tuple in the Movie table must appear with
(ex. A: Mom, B: children) Or, without the domains: -null MoviePeople ID value

One to many (A is one, B is many) is primary key of B Student (sid, name, address, phone, major) Sinon=nu P

many-to-one: opposite of one-to-many SQL Statements ® How can we express that in SQL?

One to many (B is one, A is many) is primary key of A

(One) (Many)
Student(sid: integer, name: char[20], address: @ Every movie must have a director.

Usi hed 2 (add Directs relation in the Mavie table), i
many-to-many: entities in A can be associated with many, entities in B CRE(QLEI;I_:EIéE:t"dem CRE(:]LEI;’T\EEESM“ * p;?gup"mm cun{s?rslntsl'g; oniEnhaiAesfakio); we Gl cepiine
is Pril i ensuring that each MID is associated with a MPID that is not null
Many to many is Primary Key of A + Primary Key of B name CHAR(Z,O), dept CHAR(4’), = ot allowing doletion of a director before the director % replaced
address CHAR(30), course# CHAR(3), CREATE TABLE Directed_Movie(
m—¢ Crvld phone CHAR(13), mark INTEGER) MID INTEGER,
'-_’ (oue) (oae) major CHAR(4)) title CHAR(D),
Direct the arrow points to the thing MPID CHAR(11) NOT NULL,
(one) {man)' there is only one of. DRODP TABLE Stl“qe"t ALTig;A:AfUS;:DENTRE AL PRIMARY KEY (MID),
* tesd”oﬁs rehat'o” ch et dgp? REAL FOREIGN KEY (MPID) REFERENCES
Harne)] student, schema ¢ Schema of students is MoviePeople
Q 1 @ w i’ﬁ: ;er']ﬂg;;f :s:::sﬁfmm AND tuples are altered with new attribute- ON DELETE NO ACTION
= fronmeyJone many. deleted every tuple in current ON UPDATE CASCADE)
(many) . instance is extended with T lati Weak Entity Set
Participation Constraints: Whether a relationship has to be populated or not. INSERT null value in new attribute - Translating Wea ntity sets
Important for updates. INTO Student (sid, name, address, phone, major) » Weak entity set and its -uann?nng relationship set are
Employees----[Manages]<-----Departments VALUES (‘52033688’, ‘G. Chan’, ‘1235 W. 33, Van’ translated into a single table (like many to ane anyway)
Ex. When deleting, a new department must still have a manager 882-4444’, ‘PHYS’) ’ ’ ’ ’ m“ °® * E&mﬁ?ﬂgﬁi?ﬂifﬁmg 9WTRED primary Kay
ISA Relationships: If we declare A ISA B, every A entity is a B entity « Insertasingle Tuple - - @ When the owner entity is deleted, all owned weak
Reasons for using ISA: m entities must also be deleted.

1 DELETE =
« Add descriptive attributes specific to subclass tlohm@ FROM Student (ane) (puasy) CREATE TABLE Course_Section (

« Restrict entities that participate in relationship el WHERE name = ‘Smith’ . :nm‘”‘:; ::;fz!':;d:;:';f‘zszﬁ;f;i's:;@ the ;:5:54: . f\“*‘““’l

Some ISA constraints we can’t express in ER diagram. * Delete tuples satisfying condition & OIS Sy SoL AT raak oy sol purdcipiie n'a e e]?.?\g[.,]

Overlap constraints: specializations can be < Integrity Constraints st il PRIVARY KEY (dept, course s ston s e,
« Disjoint: a superclass entity belongs to no more FOREIGN KEY (dept, o ENCES

: 4 - @ IC: condition that must be true for ANY instance of database; Course
then a single sublass . - ~— ex. domain constraints ON DELETE CASCADE)
¢ Has to EITHER be musician or actor, cannot be m m « IC’s specified when schema is defined
%l ing: subcl) ¢ IC’s checked when relations are modified
: Cvet;)app(l)ng. subclasses may overlap Legal Instance of Relation satisfies all specified IC’s
: af‘ e BOLH rjﬁusmlan o §cto_r * DBMS does NOT allow illegal instances, can avoid data
Covering Constraints: Specializations can be entry errors with this
¢ Total: A superclass entity must belong to some Candidate keys are possible when
subc_lass . 1.No distinct tuples can have the same values for all
* Movieperson be musician or actor

-~ Particl some superclass entiey may not be in an attributes in the key, and ® What should be done if a Student tuple is deleted?
b P y may y 2. No subset of S is itself a key (according to (1)). # Also delete all Grade tuples that refer to it?
. X o One of the possible keys is chosen (by the DBA) to be # Disallow deletion of this particular Student tuple?
. Sognf movie people don’t have to be a part of a the primary key (PK). CREATE TABLE Student o Set sid in Grade tuples that refer to it, to nyff. (the special
subclass s 6 (sid INTEGER PRIMARY KEY, value denoting ‘unknown'or ‘inapplicable’.)
Total + Overlap iy . - - # problem if sid is part of the primary key
i, sa mame CHAR{2O), R P i
L Mot ouons ChoiGes for Good database design : :M Igm;:ﬂﬂ::ﬁ:ﬁ address CHAR{), # Set sid in Grade tuples that refer to it, to a default sid.
4 T entity vs. attribute Students }::"\: :: 'l::::}“)' Only students listed in the Student relation should be allowed to
Actor & Musisian |yweician | Actor entity vs. relationship ¥ i * b have grades for courses that are listed in the Course relation.
Partial + Overdap binary or n-ary relationship Key Constraints CREATETABLE Grade
. . id INTEGER, d ¥ HAR(Y), mark INTEGER,
WoiieFecmon I whether or not to use ISA hlera.rchles Primary Key Constraint: CRIMARY K (?u’:i::)l::‘:i::r:\nvlf]mm::*% I
Musician || Actar oo e whether or not to use aggregation « values for primary key must be unique FOREIGN KEY (sd) REFERENCES Student.”
e ¢ aprimary key attributes cannot be null FORKIGN KE (dept, sgumigel) REFERENCES Cireetleyt, comiml)
ro— T N P Somelimes you can not specify which attributes are referenced,
Aclor & Musician, | Musician | Actar For Unique Constraint: X . i but in this case they are needed. Never hurts to include them!
« values for a group of attributes must be unique (if they are not .
null) Grade Student

Aggregation:
Having a relationship between relationships is forbidden.

« these attributes can be null 3 (53666 [G. Jomes |-

Key constraints are checked when new values are inserted, or 53688). Smith
ifi +|53650 |G. Smiith |....
- o 0 “ values are modified £ i L 2 crso M %0
Aggregation allows us to treat relationship set as entity set, lettingus (Ex.1-Normal) “Fora CREATE TABLE Grade CREATE TABLE Student CRERTE TABLE Gradail 2w 21 %
e))) ; idin snd id BTREER = sid INTEGER,
participate in other relationships. VTN S LU, N CRINTER, (si ER, (sid » A dept CHAR(4), 2 EPSE 23 %
there is a single grade. dept CHAR(4), AT " course# CHAR(3), 1 MUSC 103 ®0
@ TAG Employee @ course# CHAR(3), address LH'-R[M mark INTEGER,
) mark INTEG phone CHAR[13), PRIMARY KEY (sid,dept,courses#),
Xercise €T vs. PRIMARY KEY (sid,dept,course#)) make CHAR(D) FOREIGN KEY (sid) REFERENCES
(Ex.2-Silly) “Students can Student,
K 4 and CREATE TABLE 2)) FOREIGN KEY (dept, course#)
i ta € 4 course once, an (sid I Foreign Key Constraint REFERENCES Course(dept, cnum)
receive a single grade for dept 4) Foreign key: Set of attributes in one) “
that course; further, no two course# CHAR(3), relation used to E.g.
i i i mark CHAR{2), R . Grade(sid, dep!, course#, grade)
students in a course receive ref 2 tupl th at
Teaches e ph PRIMARY KEY (sid depteourset), ‘Teference’ a tuple in another relation. o sid1s a foraign key rafarring 1o Student
& : UNIQUE (dept.coursef, mark)) ¢ Must correspond to the primary key of & (dept, course#) is a foreign key referring to Course
the other relation. Referential integrity: All foreign keys reference existing

entities.
@ ie. there are no dangling references
@ all foreign key constraints are enforced

The (mlmmal) key of Evaluates is ||d + course# + term. « Like a ‘logical pointer’.

Normal Forms
Functional dependency: one attribute determines another
through a functional dependency.

Normalization Finding Minimal Keys
Normalization is the process of removing redundancy from data Ex. Find all minimal keys for R(ABCD) where FDs are AB -> C and
Four important normal forms: C->BD.

Ex. If Department determines Address but not Name, we say
that there’s a functional dependency from Department to
Address. But Department is NOT a key.

X determines Y.

if t1.X = t2.X then t1.Y =t2.Y

Itis a statement about all allowable instances.

Must be identified by application semantics

Given some instance rl of R, we can check if rl violates some

« Second Normal Form (2NF)

Boyce-Codd Normal Form (BCNF)

Third Normal Form (3NF)

If arelation is in a certain normal form, certain problems are
avoided/minimized

Normal forms can help decided whether decomposition
(splitting tables) will help

First Normal Form (1NF) 1.List only attributes that appear on the RHS of the FDs (only
what can be derived). Put on the right.
[[| Right

D
2. List all the attributes that only ever appear on the LHS of an
FD (or do not appear in the FD at all, ex. things that have to be a
part of any key). put on the left.
A D

FD f, but cannot tell if f holds over R.

Examples of Functional Dependencies

Trivial case is where:
FD: PostalCode -> Province
So PostalCode, House # -> Postal Code

Given some FDs, we can often infer additional FDs:

Reflexivity: If Y X, then X=2Y

e.g., city,major->»city

Augmentation: If X > Y, then XZ>YZ foranyZ
e.g., if sid->city, then sid,major -> city,major
Transitivity: If X > Y and ¥ 2> Z, then X3 2
sid 2 city, city= areacode implies sid areacode
Union: If XY and X>2Z, then XY 2

e.g., if sid>acode and sid->city, then sid>acode,city
Decomposition: XY Z, then XY and X2>Z
e.g., if sid=>acode,city then sid>acode, and sid->city

A couple of additional rules (that follow from axioms):

e Union: IfX=2Y and X22Z, then X=2Y2Z

e.g., if sid»acode and sid->city, then sid-»acode,city
Decomposition: If X2>Y 2, then XY and X->Z
e.g., if sid»acode,city then sid>acode, and sid->city
Union: fX=>Y and X=Z, then X=>YZ
e.g., if sid-»acode and sid-city, then sid-»acode city

1. X=2Y Given
2. X2Z Given
3. X3XY 1, augmentation
4. XY2ZY 2, augmentation
5 X2ZY 3, 4, transitivity

Decomposition: X>Y Z, then X2Y and X>Z
e.g., if sid»acode,city then sid-»acode, and sid->city

1INF
Each attribute in a tuple has only one value (can’t be an array).
E.g., for “postal code” you can’t have both V6T 174 and V6S 1W

3. List attributes that appear on the LHS and the RHS of the FDs
(not obviously required and may help you derive). Put in middle
6 Left Middle | Right
A BC D
Why do we need it? Codd’s original version allowed multi-valued 4, Take the closure of the attributes in the left column.
attributes {A}+ = {A}
P ST T S ' % £t 1 20 you e i
ey. If not, start adding in attributes from the middle column to
1 1 1 . A . N
AT :W see if you can determine all the attributes of the relation.

Examples of 3NF

A Relation R is in 3NF if:
If X -> b is a non-trivial dependency in R, then X is a superkey for R

Can't have multiple values
in a single attribute

Normalize or B is part of a (minimal) key.
to INF
Note: b must be part of a key not part of a superkey, (if a key exists, all
T T ributes are part of a superkey)
1 VBT 124 Example:
1 VES 1W8 R(Unit, Company, Product)

Unit -> Company
Company, Product -> Unit
Keys: {Company, Product}, {Unit, Product}

2NF

There are no partial key dependencies.

Arelation is in 2NF if it is in INF and for every FD, X -> Y where X
is a (minimal) key and Y is a non-key attribute, then no proper
subset of X determines Y.

Rule: for all non-trivial functional dependencies in a
relation R of the form X->b, it must be the case that X is
asuperkey of R or b is part of a key.

Ex. This address relation is not in 2NF

e.g., the address relation is not in 2NF:

e House#, street, postal_code is a (minimal) key

Minimal Cover G for a set of FDs F:
Closure of F = closure of G (i.e., imply the same FDs)
Right hand side of each FD in G is a single attribute

X Y * If we delete an FD in G or delete attributes from an FD in
s /,_J_‘\ G, the closure changes
= g :

@ House#, street, postal_code - Province eg., A>B, ABCDE, EF>GH, ACDE3-EGhas the

Subset of X v following minimal cover:

—_—— @ A>B, ACD=E, EF>G and EF5H
@ Postal_code < Province 1. Put FDs in standard form (have only one attribute on
Not in 2NF RHS)

2NF 2. Minimize LHS of each FD

There are no partial key dependencies. 3. Delete Redundant FDs
Arelation is in 2NF if it is in INF and for every FD, X -> Y where X Example:
is a (minimal) key and Y is a non-key attribute, then no proper ~ A-B, ABCD->E, EF3G, EF3>H, ACDF 2 EG

1. X>YZ Given subset of X determines Y. . Replace last rule with
2. YZ2Y Reflexivity . - ACDF 3> E
5 YZOZ Reflexivity Ex. This address relation is not in 2NF . ACDF > G
4. XY 1, 2, transitivity Boyce-Codd Normal Form (BCNF) 1. g-:ltSF)Ds in standard form (have only one attribute on
5. X=2Z 1, 3, transitivity Arelation R is in BCNF if X -> b is a non-trivial dependency in R, .
.fd 1: sname > ci thenXs asuperkey for . 2 gﬂ:t‘a::ZI:s:i::d‘:ni?Dh:D
Show that (sname, p#) is a superkey of i X i . . . E Ja:
SupplierPart(sname,city, status,p# pname, qly) fd2: city = status Ex. Whenever a set of attributes R determine another attribute, Example:
Proof has two parts: fd3: p# - pname it should determine all the attributes of R. A-B, ABCD-E, EF>G, EF>H, ACDF - E, ACDF > G
a._Show: sname, p# is a (superlkey .mm i e cll"’Check if all the left parts of the FD are a superkey. If they are ' Ca:;’; ta'fB?:Em:g a“fa: ﬁo: ':9 L:}S? B
- s . ‘= , (erucially includes B) so remove
1. sname, p# -) sname, p# refigx then itis in BCNF, and if not, they need to be decomposed. from the FD
2. sname - city fd1 [1. Put FDs in standard form (have only one attribute on RHS)
3. sname - status 2,i2,uans Decomposition 2. Minimize LHS of each FD
. o ity, ' ecomposition of R replaces R by two or more relations.
4. sname,p# -> city, p# 2, aug D f R repl: R b L 3. Delete Redundant FDs
5. sname,p# > status, p# 3, aug « Each new relation contains a subset of the attributes of R Example:
& sname,p# -» sname, p¥#, status 1, 5, unien (and no attributes not appearing in R) :
7. sname,pi > sname, p#, stalus, city 4, 6, union * Every attribute of R appears in at least one new relation. AT-B;‘A:Z_;%DEFF")%‘EF?H‘ ﬁ‘?:D.F _)thEl:cr::l"Fh_t)edGFD
5. sname,p# -> sname, p#, status, city, gty 7.1d4, union Definition: Ry R, is the (natural) join of the two relations; Le., = ° :CSF°~ ACD:EIBE: °°r:5' SRS IE :19 i :
9. sname,p# - sname, p#, stalus, city, gty, pname 8, fd3, union @ach tuple of R, is concatenated with every tuple in R; having -~ - nSOCARIAMEVOITO MGG

b. Show: (sname, p#) is a minimal key of

the same vellﬁas on the common attributes. rules
1

SupplierPart(sname,city,status, p#,pname,aty) m
1. p# does not appear on the RHS of + Final answer: A>B, ACD>E, EF2>G, EF>H
any FD therefore except for p# itself, |fd1: sname - city ,l—.g
nothing else determines p# fd2: city > status 4 |5
3. specifically, sname > p# does not hold fd3: p# = pname i 3 Ry Ry
4. therefore, sname is not a key |fd4: sname, p# > gty R, —
5. similarly, p# is not a key @]C
2 |3
Spegifically, for combinations of sname and p#: 5 16 Examples of BCNF
’ sname,i# ~>sname, pi#, city, status, pname, gty =2 |8 - Remember BCNF def: For all non-trivial functional dependencies X=b, X musi
+ sname > sname, city, status ' be a superkey for a relation to be in BCNF
- _p# > p#, pname Lossless-Join Decomposition Relation: R{ABCD) FD:B3C, DA
» Scared you're going to mess up? Closure is a fool-proof method of . .) Keys?
checking FDs and finding implicit FDs. Informally: If we break a relation, R, into bits, when we put the A* = (A}
& Closure for a set of attributes X is denoted X* bits back together, we should get exactly R back again ‘= (B.C}
» X' includes all attributes of the relation IFF X is a (super)key Formally: Decompaosition of R into X and Y is lossless-join w.r.t. a + = {C}
. t;glogr:\;nslﬁ;dmg Closure of X: ™ aname 3 clty set of FDs F if, for every instance r that satisfies F: D* = {A,D}
- : a2 city > status » If we JOIN the X-part of r with the Y-part of r the result is BD*={B,D,C,A}
Until Closure doesn't change do
| i fd3: p# > prame exactly r BD is the only key Xb
ifay, ..., 8,#Cis a FD and {a,, ...,a,} ~ B . Look at FDB=>C. IsB rkey?
Closure fdd: sname p# > aly g [t is always true that r is a subset of the JOIN of its X-part and o 8 e il

Then add C to Closure
SupplierPart(sname,city,status,p#,pname.qty)
Ex: sname,p#* = | {sname, p#, city, status, pname, qty} <-- superkey
A——— {sname, city, status}
o#t = {p#, pname}
So seeing if a set of atiributes is a key means
checking to see if it's closure is all the atiributes = pretty simple

No. Decompose G\D@ C)
R1(B,C), R2(A,B,D) e
Look at FD D= A. Is D a superkey for R27

No. Decompose
R3(D.A), R4(D,B)
Final answer: R1(B,C), R3(D,A), R4(D,B)

Y-part, even if the join isn't lossless

In general, the other direction does not hold — you may get
back additional information! If it does hold, the decomposition
is a lossless-join.

Note: The word loss in lossless refers to loss of information,
not to loss of tuples. In fact, for “loss of information” a better
wav to refer to it miaht be “addition of spurious information”.

A B

___X=2b
(B8 @A

Let R be a relation with attributes A, and FD be a set of
FDs on R s.t. all FDs determine a single attribute

Pick any f e FD that violates BCNF of the form X->b
Decompose R into two relations: Ry(A-b) & Ry(X v b)
Recurse on R, and R, lﬁﬁing FD

[—
b2 A b2

» decompose s jOIN

Lo |m

o o W0

- &~

e e B b -2

M9 19t b o

W oo oo oWy

R2
Oth
Pictorally:
R1 R2

Last two rows are not in the original.

Nmmwl
mmun]

