
SQL EXAMPLES

Find the names of all movie stars who’ve been in a movie

SELECT DISTINCT Name
FROM StarsIn s, Moviestar m
WHERE s.starsid = m.starid

seeing if different faculties have
same department.

Find the departments that have more then one faculty member

SELECT DISTINCT f1.deptid
FROM Faculty f1, Faculty f2
WHERE f1.fid <> f2.fid AND f1.deptid = f2.deptid

Need distinct or else
can get movie star
name duplicates!

Find IDs of MovieStars who’ve been in a movie in 1944 or 1974

SELECT StarId
FROM Movie M, StarsIn S
WHERE M.MovieID = S.MovieID AND Year = 1944
UNION ALL
SELECT StarId
FROM Movie M, StarsIn S
WHERE M.MovieID = s.movieID AND year=1974

keeps duplicates

For 1944 and 1974 use INTERSECT

equivalent to using
year=1944 OR year=1974

Find the name & Age of the oldest student(s)

SELECT sname, age
FROM Student s2
WHERE NOT EXISTS (SELECT *
 FROM student s1
 WHERE s1. age > s2.age)

Find an s2 where there is
no s1 older than them

Can also be written with any/all instead of exist/not exist

SELECT sname, age
FROM Student s2
WHERE s2.age >= ANY (SELECT age
 FROM student s1)

Or with aggregate operators
SELECT sname, age
FROM Student s2
WHERE s.age = (SELECT MAX(s2.age) FROM Student S2)

Find students who’ve taken all classes (division example)

1) With EXCEPT & NOT EXISTS
SELECT sname
FROM student s
WHERE NOT EXISTS ((SELECT c.name
 FROM class c)
 EXCEPT
 (SELECT e.cname
 FROM enrolled e
 WHERE e.snum = s.snum))

all course names

courses student is
enrolled in

courses
student is
not
enrolled in

2) Without EXCEPT using NOT EXISTS
SELECT sname
FROM student s
WHERE NOT EXISTS(SELECT c.name
 FROM class c
 WHERE NOT EXISTS (SELECT e.snum
 FROM enrolled e
 WHERE c.name = e.cname
 and e.snum = s.snum))

Find those majors for which their average age is the minimum over all majors

CREATE VIEW Temp(major, average) AS
 SELECT S.major, AVG(s.age) AS average
 FROM Student S
 GROUP BY major

SELECT major, average
FROM Temp
WHERE average = (SELECT min(average)
 FROM Temp)
selecting minimum over all majorsgrouping by major, getting average age

Get all students using natural join

SELECT *
FROM student s, enrolled e
WHERE s.snum = e.snum

SELECT *
FROM Student S NATURAL LEFT OUTER JOIN
Enrolled E

SET OPERATIONS

Each automatically eliminates duplicates.
To keep them, use UNION ALL
 INTERSECT ALL
 EXCEPT ALL
suppose a tuple occurs m times in r and
n times in s, then it occurs

m + n times in r union all s
min(m, n) times in r intersect all s
max(0, m-n) times in r except all s

STRING MATCHING
LIKE is used for string matching

_ stands for any one character
% is 0 or more arbitrary characters

ORDER BY Name des/asc (asc default)
OR ORDER BY Year, Name
(first order by year, then name within year
OR ORDER BY c DESC, b ASC

ORDERING

SQL
Integrity Constraints in Create
CREATE TABLE Student
 (sid CHAR(20),
 name CHAR(20)
 PRIMARY KEY (sid))

domain types: char(n), varchar(n), int, small int
numeric(p, d), real, double precision, float(n)

pk and ck,
foreign
keys

create domain person - name char(20) not null
domains are data types with optional constraints.

by default, duplicates are not eliminated.

date: ‘2021-07-27’ 4-digit year, month, day
time: ‘09:00:30` hours, minutes, seconds
timestamp: ‘2001-7-27 09:00:30.75’
 date plus time of day
interval: ‘1’ day period of time

Division Statement

Set Operations used b/w 2 sets of tuples
UNION usually used for or
INTERSECT usually used for and
EXCEPT usually used for A but didn’t B
 ‘have not been in’

SET OPERATIONS PART 2

NESTED QUERIES queries w/ another query embed
SELECT, FROM, WHERE, HAVING, can itself contain a SQL query!
using IN and NOT IN

ex. WHERE m.starid IN (select _ ...)
Similar to nested loop evaluation

For each MovieStar tuple (FROM MovieStar),
 check qualification by computing subquery

can replace INTERSECT queries using IN

Division in SQL

EXISTS

EXISTS: true if set is not empty
Used in combination w/ a subquery (t if at least 1 row)
Can be used in SELECT, INSERT, UPDATE, DELETE
Can also use NOT EXISTS

UNIQUE :True if there are no duplicates

op ANY, op ALL: : operation can be >, <, =, <=, >=, <>
WHERE YEAR > ANY (SELECT year
 FROM Movie
 WHERE Title=’Fargo’)

Movies made
after Fargo

NESTED QUERIES

Better way w/ EXCEPT1.
Hard way without EXCEPT2.

AGGREGATE OPERATIONS

HAVING is for filtering sums/maxes/mins etc,
is like a where condition for group by

this is for checking individual values

VIEWS

Functions for multiset of values of a col, return val

This version eliminates duplicates before applying operation to A

AVG, MIN, MAX, SUM, COUNT

COUNT(DISTINCT A), SUM(DISTINCT A), AVG(DISTINCT A)

Relations defined w/ a create table, statement existing in the physical layer
Hide data from users, make queries easier, modularity

CREATE VIEW CourseWithFalls(dept, course #, mark) AS
 SELECT c.dept, c.course#, mark
 FROM Course C, Enrolled E
 WHERE c.course# = e.course# and mark < 50

View updates must occur at base tables.
DBMS restrict view updates only to some simple views on single tables

(updatable views)
DROP VIEW <view name> does NOT affect any tuples in underlying relation

We can assign commands to DROP table for view.
DROP TABLE student RESTRICT/CASCADE

drop table unless there’s a view on it
drop table & recursively drops any view referencing it

NULL Values: tuples can have null values. unknown or doesn’t exist
can use IS NULL (IS NOT NULL) in WHERE or others

Null and 3-valued logic

NULL VALUES

Enroll Student 51135593 into every
class taught by faculty 90873519

INSERT, UPDATE, DELETE

Relational Algebra Part 2
Find all the professors who are in any of the committee’s professor Piper is in

SELECT DISTINCT profname
FROM Committee
WHERE commname IN (SELECT *
 FROM Committee
 WHERE profname = ‘Piper’)
 Find all professors who are in at least all those commitees that professor Piper is in

SELECT DISTINCT c.profname
FROM Committee c
WHERE NOT EXISTS (SELECT commname
 FROM Commitee a
 WHERE profname = ‘Piper’)
 EXCEPT
 (SELECT commname
 FROM committee a
 WHERE a.profname=c.profname)

Find all the enclosures that were never visited by the visitors born before 2000-01-01

SELECT E.id
FROM Employee E
EXCEPT
(SELECT EZ.id
 FROM Visitor v, Visits vs, Enclosure EZ
 WHERE v.visitorID = vs.passID AND vs.enclosureID = ez.id AND v.DateOfBirth < Date(‘2001-01-01’)

Visitor(visitorID, firstName, lastName, dateofBirth)
Visits(passID, enclosureID)
Enclosure(id, latitude, longitude)

Find all the animals of species cat that are taken care of by ‘Sam Smith’

SELECT employeeID
FROM TakesCareOf NATURAL INNER JOIN Employee
WHERE animalID IN (SELECT id from Animal WHERE Species=`Cat`) AND
 firstName = ‘Same’ AND lastName = ‘Smith’

Find the names of sailors who have reserved at least 2 boats

SELECT s.sid
FROM sailors s
WHERE s.rating >= (SELECT MAX(s2.rating) FROM Sailors s2)

Find the sailor id of the sailors with the highest rating

SELECT s.sname
FROM Sailors s, Reserves r1, Reserves r2
WHERE r1.sid=s.sid AND r2.sid=s.sid AND r1.bid <> r2.bid

Find the names of sailors who have reserved all boats whose name starts w/ ‘’typhoon’

SELECT s.sname
FROM Sailors s
WHERE NOT EXISTS (SELECT b.bid FROM Boats b WHERE name LIKE “%typhoon%”
 EXCEPT
 (SELECT r.bid FROM Reserves r WHERE r.sid = s.sid))

Find the name & age of the oldest sailor

SELECT s.sname, s.age
FROM Sailor s
WHERE s.age = (SELECT MAX(s2.age) FROM Sailor s2)

“no boat w/ typhoon that we have not reserved”

