
Find possible itemsets, and support of size k, denoted as 1.
C_1 = {tree}: 3, {cup}: 2, {paper}: 2, {book}: 4, {tomato}: 2 {pen}: 4 }

HAVING is for filtering sums/maxes/mins etc,
is like a where condition for group by

this is for checking individual values

CREATE VIEW CourseWithFalls(dept, course #, mark) AS
 SELECT c.dept, c.course#, mark
 FROM Course C, Enrolled E
 WHERE c.course# = e.course# and mark < 50
View updates must occur at base tables.

DBMS restrict view updates only to some simple views on single tables
(updatable views)
DROP VIEW <view name> does NOT affect any tuples in underlying relation
We can assign commands to DROP table for view.
DROP TABLE student RESTRICT/CASCADE

drop table unless there’s a view on it
drop table & recursively drops any view referencing it

1) With EXCEPT & NOT EXISTS
SELECT sname
FROM student s
WHERE NOT EXISTS ((SELECT c.name
 FROM class c)
 EXCEPT
 (SELECT e.cname
 FROM enrolled e
 WHERE e.snum = s.snum))

all course names

SELECT major, average
FROM Temp
WHERE average = (SELECT min(average)
 FROM Temp)
selecting minimum over all majors

SELECT *
FROM Student S NATURAL LEFT OUTER JOIN
Enrolled E

seeing if different faculties have same
department.

Find IDs of MovieStars who’ve been in a movie in 1944 or 1974______________________

SELECT StarId
FROM Movie M, StarsIn S
WHERE M.MovieID = S.MovieID AND Year = 1944
UNION ALL
SELECT StarId
FROM Movie M, StarsIn S
WHERE M.MovieID = s.movieID AND year=1974

For 1944 and 1974 use INTERSECT

equivalent to using
year=1944 OR year=1974 Can also be written with any/all instead of exist/not exist

SELECT DISTINCT c.profname
FROM Committee c
WHERE NOT EXISTS (SELECT commname
 FROM Commitee a
 WHERE profname = ‘Piper’)
 EXCEPT
 (SELECT commname
 FROM committee a
 WHERE a.profname=c.profname)

Assuming 'a' is already materialized, what are the best 3 other views that
we should materialize?

Remember that node includes itself, and once you’ve made a
choice, you count the subtraction from that point onwards.

CPSC 304 FINAL EXAM

Heirarchy method

Aggregate Operations

AVG, MIN, MAX, SUM, COUNT

Relations defined w/ a create table, statement existing in the physical layer
Hide data from users, make queries easier, modularity

Views

 tuples can have null values. unknown or doesn’t exist
can use IS NULL (IS NOT NULL) in WHERE or others

Null and 3-valued logic

Null Values

SQL Examples

Find students who’ve taken all classes (division example)

courses student
is enrolled in

courses
student
is not
enrolled
in

2) Without EXCEPT using NOT EXISTS
SELECT sname
FROM student s
WHERE NOT EXISTS(SELECT c.name
 FROM class c
 WHERE NOT EXISTS (SELECT e.snum
 FROM enrolled e
 WHERE c.name = e.cname
 and e.snum = s.snum))

Find those majors for which their average age is the minimum over all majors

CREATE VIEW Temp(major, average) AS
 SELECT S.major, AVG(s.age) AS average
 FROM Student S
 GROUP BY major
grouping by major, getting average age

Get all students using natural join

SELECT *
FROM student s, enrolled e
WHERE s.snum = e.snum

Find the names of all movie stars who’ve been in a movie

SELECT DISTINCT Name
FROM StarsIn s, Moviestar m
WHERE s.starsid = m.starid

Find the departments that have more then one faculty member

SELECT DISTINCT f1.deptid
FROM Faculty f1, Faculty f2
WHERE f1.fid <> f2.fid AND f1.deptid = f2.deptid

Need distinct or else can
get movie star name
duplicates!

keeps duplicates

Find the name & Age of the oldest student(s)

SELECT sname, age
FROM Student s2
WHERE NOT EXISTS (SELECT *
 FROM student s1
 WHERE s1. age > s2.age)

Find an s2 where there is no
s1 older than them

SELECT sname, age
FROM Student s2
WHERE s2.age >= ANY (SELECT age
 FROM student s1)

Or with aggregate operators
SELECT sname, age
FROM Student s2
WHERE s.age = (SELECT MAX(s2.age) FROM Student S2)

Relational Algebra Part 2

Find all the professors who are in any of the committee’s professor Piper is in

SELECT DISTINCT profname
FROM Committee
WHERE commname IN (SELECT *
 FROM Committee
 WHERE profname = ‘Piper’)

Find all professors who are in at least all those commitees that professor Piper is i

Find all enclosures that were never visited by the visitors born before 2000-01-01

SELECT E.id
FROM Employee E
EXCEPT
(SELECT EZ.id
 FROM Visitor v, Visits vs, Enclosure EZ
 WHERE v.visitorID = vs.passID AND vs.enclosureID = ez.id
AND v.DateOfBirth < Date(‘2001-01-01’)

Visitor(visitorID, firstName, lastName, dateofBirth)
Visits(passID, enclosureID)
Enclosure(id, latitude, longitude)

Find all the animals of species cat that are taken care of by ‘Sam Smith’

SELECT employeeID
FROM TakesCareOf NATURAL INNER JOIN Employee
WHERE animalID IN (SELECT id from Animal WHERE Species=`Cat`) AND
 firstName = ‘Same’ AND lastName = ‘Smith’

Find the names of sailors who have reserved at least 2 boats

SELECT s.sid
FROM sailors s
WHERE s.rating >= (SELECT MAX(s2.rating) FROM Sailors s2)

Find the sailor id of the sailors with the highest rating

SELECT s.sname
FROM Sailors s, Reserves r1, Reserves r2
WHERE r1.sid=s.sid AND r2.sid=s.sid AND r1.bid <> r2.bid

Find names of sailors who have reserved all boats whose name starts w/ ‘’typhoon’

SELECT s.sname
FROM Sailors s
WHERE NOT EXISTS (SELECT b.bid FROM Boats b WHERE name LIKE “%typhoon%”
 EXCEPT
 (SELECT r.bid FROM Reserves r WHERE r.sid = s.sid))

“no boat w/ typhoon that we have not reserved”

Find the name & age of the oldest sailor
SELECT s.sname, s.age
FROM Sailor s
WHERE s.age = (SELECT MAX(s2.age) FROM Sailor s2)

UNION usually used for or
INTERSECT usually used for and
EXCEPT usually used for A but didn’t B
 ‘have not been in’

Set operations

LIKE is used for string
matching

_ stands for any one
character
% is 0 or more arbitrary
characters

Updating with condition

update SuppProd
 set Price = Price * 0.9
 where PID in
 (select PID
 from Product
 where Name = 'Coronary Stent');

HRU Algorithm

Make table of values. “Gain” is the top
(a) subtracted with the current one.

1.

Data warehousing: Finding number of tuples
Data warehouse with dimensions D1, D2, D3, D4, D5. They have 999,
99, 24, 4, and 19 values, . Sparsity is 10%. What’s est. number of tuples?

Apriori Algorithm

 Apriori speeds up calculating association rules
based on the observation that each subset of a
frequent itemset must also be a frequent itemset Ex.
rice only appears one time, it can’t appear two or
more times with anything else.

2. Find frequent itemsets of size k, denoted as

minimum support: 33%.

F_1 = {{tree},{cup}, {paper}, {book}, {tomato}, {pen}}
It’s these values because they occur more then 33% (2/6 times).
2. Go up one k, and ONLY use possible combinations from F_{k-1}.

F_2 = {{tree, paper}, {tree, book},
{book, pen}, {tomato, pen}}

repeat until it’s not possible anymore. Apriori will
finally return all the items meeting the minimum
support.

Data mining is the exploration and
analysis of large quantities
of data in order to discover valid, novel,
potentially useful,
and ultimately understandable patterns
in data.

Valid: The patterns hold in general.
Novel: We did not know the pattern beforehand.
Useful: We can devise actions from the patterns
(business intelligence).
Under-
standable: We can interpret and comprehend the patterns

Entity Set: Collection of entities (ex. All cats)
All entities in entity set have same set of attributes
All entity sets have keys

Domain: value type (ex. float, date, int)
Key: minimal set of attributes which can identify an entity in entity set.
Primary Key: main key to identify entity in entity set. has to be as minimal as possible.
(ex. cat_id). MUST BE UNIQUE, and NON-NULL.
Candidate key: One more kore keys in a relation
Super key: A key + zero or more additional attributes. (Ex. {sid, name}, or {CWL, major},
or {name, major, age})
Minimal Key: Smallest set of keys to identify entity in entity set
Cardinality ratio: the number of relationships in the set that an entity can participate
in. These are called cardinality constraints:

Key constraints are shown with arrow in ER diagram:
one-to-one: entity in A is associated at most once with one entity in B
(ex. A: Student, B: student ID #)
The primary key of R (relation) is Primary Key of A OR Primary Key of B
one-to-many: entity in A is associated with any number of entities in B
(ex. A: Mom, B: children)
One to many (A is one, B is many) is primary key of B
many-to-one: opposite of one-to-many
One to many (B is one, A is many) is primary key of A
many-to-many: entities in A can be associated with many entities in B
Many to many is Primary Key of AND Primary Key of B

Removing redundancy from data.

No partial key dependencies.
A relation is in 2NF if it is in 1NF and for every FD, X -> Y where X
is a (minimal) key and Y is a non-key attribute, then no proper
subset of X determines Y.

A Relation R is in 3NF if:
If X -> b is a non-trivial dependency in R, then X is a superkey for
R, or B is part of a (minimal) key.
Note: b must be part of a key not part of a superkey (if a key
exists, all attributes are part of a superkey)
Example:
Each CK has 3 attributes but each FD has 2, so it’s not in BCNF.
3NF?
AB → C AB is not a CK but C is part of a CK; so, 3NF is good so far.
CD → E CD is not a CK, but E is part of a CK; therefore, 3NF, so far
DE → B DE is not a CK, but B is part of a CK
Conclusion: 3NF
Rule: for all non-trivial functional dependencies in a
relation R of the form X->b, it must be the case that X is
a superkey of R or b is part of a key.

Overlap constraints: specializations can be
Disjoint: a superclass entity belongs to no more
then a single sublass
Has to EITHER be musician or actor, cannot be
both
Overlapping: subclasses may overlap
Can be BOTH musician or actor

Covering Constraints: Specializations can be
Total: A superclass entity must belong to some
subclass
Movieperson be musician or actor
Partial: some superclass entity may not be in any
subclass
Some movie people don’t have to be a part of a
subclass

INCORRECT.

In 1NF.

Overlapping Constraints

Key Constraints

Aggregation:
Having a relationship between relationships is forbidden.

Aggregation allows us to treat relationship set as entity set, letting us
participate in other relationships.

The (minimal) key of Evaluates is iid + course# + term.

Aggregation

Normalization

First Normal Form (1NF)

Second Normal Form (2NF)

Boyce-Codd Normal Form (BCNF)

Third Normal Form (3NF)

Each attribute in a tuple has only one value (can’t be an array).
E.g., for “postal code” you can’t have both V6T 1Z4 and V6S 1W6
Codd’s original version allowed multi-valued attributes.

For all non-trivial functional dependencies X->b, X must be a
superkey for a relation to be in BCNF.
Ex. Whenever a set of attributes R determine another attribute,
it should determine all the attributes of R.
Check if all the left parts of the FD are a superkey. If they are,
then it is in BCNF, and if not, they need to be decomposed.

Decomposing

Decomposing into BCNF

STEP 1: Find all candidate keys.

Decompose into minimal cover

STEP 1: Put FDs into standard form.
Standard form: split output into individual FDs.
V, U -> A,B gets turned into V,U -> A and V,U -> B.
P, Q -> T gets turned into P -> T, Q -> T.

STEP 2: Minimize the LHS (left-hand-side) of FDs.

Look for areas that can be changed to make LHS
small as possible. the “V” in V,U -> W is useless.

STEP 3: Delete Redundant FDs.

Statements which are proven by other
statements can be removed.

Candidate keys is where you can get every letter.

STEP 2: Identify all the FDs that violate the BCNF condition.

STEP 3: Decompose R so that everything is in BCNF. Choose FDs in ascending
order.

BCNF is that for X -> B, it has
to be a superkey. Since
{C, E}, {C, D}, {C, B} are keys,
FD1 and FD2 are ruled out,
meaning only 3 options left.

Normal Form, and
proving

decompositions

Functional dependency: one attribute
determines another.
Ex. Department determines Address
but not Name, we say that there’s a
functional dependency from
Department to Address. But
Department is NOT a key.

Participation Constraints: Whether a relationship has to be populated or not.
Important for updates.
Employees---->[Manages]<-----Departments
Ex. When deleting, a new department must still have a manager

Participation Constraints
ISA Relationships: If we declare A
ISA B, every A entity is a B entity
Reasons for using ISA:

Add descriptive attributes
specific to subclass
Restrict entities that
participate in relationship

Entity Relationship Diagrams

ISA relationships

Weak Entities

Conceptual Design

Underlined is primary
key. make sure to
underline middle item.

Cross or cartesian product is denoted by X * Y and returns a
relation on tuples, whose schema contains all fields of X
followed by all fields of Y.
Natural join is denoted by ‘⋈’. It is applicable only when there is
at least one attribute common to R and S.

<-------

<-------

<-------
closure is that given a set, what
else can it get?

