
Solving the algorithm
Brute force:

Make list of variables 1.
Try every assignment of truth values to  
these variables

2.

Return YES if satisfies, NO otherwise.3.
 Repeat for 2^n different assignments in
worst case.

4.

Worst case run time:

Building a reduction from SAT to 3-SAT, to prove SAT is NP-Complete.

Converting SAT instance (Prob. A) to 3-SAT instance (Prob. B)
Instance I of SAT. Instance I’ of 3-SAT. For reduction to work, I is satisfiable
only if I’ is.

Imagine I has clause with two literals,                        To obtain I’ from I, we
replace this clause with                              and                                 A truth
assignment that satisfies the original clause, satisfies this one. Y is
useless, since it is true in first and false in the other.      

1.

Imagine I has clause with 1 literal,           . Replace with                             ,2.
                           
   3. Imagine I has 4 literals,                                          Replace with:

       If one of the first two literals                              is true, first new clause is      
       satisfied. Must make Y false.
   4. To generalize, convert any clause with k > 3 literals
        Into 3 literals. Generalization: 

   5. TRANFORMATION INSTANCE ALGORITHM: Use name TRANSFORM-
        CLAUSE to refer to algorithm. The algorithm converts an instance I of   
         SAT to an instance I’ of 3-SAT, working clause by clause to call  
         TRANSFORM-CLAUSE for K > 3, and for K < 3 calling on step 1 and 2.

2. If our reduction takes O(g(n)) time, and there is no algorithm for problem
A that runs in O(g(n)) time, there CANNOT be an SOLVING algorithm that
runs in O(g(n)) time. Remember that                       so THIS IS HOW WE USE
REDUCTIONS IN AN NP-COMPLETENESS PROOF. 
3. Our reduction from SAT to 3-SAT tells us that if 3-SAT can be solved in
polynomial time, then ANY problem in NP can be solved in polynomial
time.

2. Given a clause                            , enforce it so that the tree is good if the clause is
good, AND that each variable cannot be both true and false.

 Given a 3-SAT instance with four variable gadgets (w, x, y, z), turn into graph,
with shared hub node.

1.
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Boolean Satisfiability (SAT) Problem: NP Complete.
Given a series of truth assignments, is there a way to make the entire
statement true?

Types of Problems
Theory

X1 = F
X5 = T
X2 = T
X3 = T
X4 = T

This satisfies the clause.
Certifying if it’s correct
Plug in the values.
is polynomial, meaning it it’s in class NP.

3-SAT Problem: Every clause must be exactly length 3.
Better for NP-completeness reductions, since it is constrained. (We will
reduce from 3-SAT to problem we want to prove is NP-complete).

What do reductions tell us:
If our reduction’s algo takes O(f(n)) time, and black box solver for B
also takes O(f(n)) time, runtime to solve problem A is also O(f(n)).

1.

(convert B solution to problem A Solution)

(convert to problem b instance)

Steiner Problem (ST): Optimization Problem, NP Complete
Given the graph below, how do we connect the shaded parts (S) with least
amount of edges? Optimization problem, minimizing edges connecting.

Decision Problem: Output can be
either a yes or no. For Steiner, Yes is
when it connects all shaded nodes,
with edge amount < k.  If u specify
edge amount < any other solution, is
NOT a decision problem.

An Instance of ST:
ST is good: Edges of E’ (soln) connect all vertices in S, and |E’| < = K
ST is optimal: Edges of E’ (soln) connect all vertices in S, |E’| < = the size of
any other solution for the instance.

K = size of soln u
want as input.

Certifying the algorithm
(1) Check that edges in E’ have size at most k, (2) the edges connect all shaded
vertices with a DFS on the subgraph of G formed by deleting all edges but the ones
in E’, starting from any shaded nodes. During DFS, we “check off” all shaded nodes.
If |E’| <= K and all shaded notes are checked off, E’ is a good solution (Yes). is in
CLASS NP.

Building a Reduction from 3-SAT to ST, to show that ST is NP-Complete
Converting 3-SAT instance (Prob. A) to ST instance (Prob. B)
If we reduce from 3-SAT to ST in polynomial time, we can “chain” together a
reduction from any problem to 3-SAT with the reduction from 3-SAT to ST, to get
a larger polynomial reduction from that problem in NP to ST. Going from ST ->
3SAT isn’t interesting, since all it does is say that ST can be reduced into 3SAT.

P: Can create algorithm to solve in polynomial time.
NP: Can be verified in polynomial time. 
NP-complete: A problem A that’s NP, in which you can reduce any other NP
problem B to A polynomially. It’s possible to reduce any NP problem into 3-SAT.
NP-hard: A problem is as hard as every other problem in NP. NP hard problems
can possibly not be verified in polynomial time.
P != NP No one has ever been able to solve an NP problem polynomially. If
someone successfully does so, then ALL NP problems are solvable polynomially.

(convert to problem b instance)

We can choose independently for each variable to go “left” (true) or “right” false.
We make k=8 so there’s JUST ENOUGH edges to enforce you choosing one edge or
the other.

For each variable, we need to connect the shaded node between the + and -.
Whichever way we connect it is what we choose for the truth value. 
3. Complete reduction from 3-SAT to ST such that ST instance is YES if and only if
3-SAT instance is YES also.

For a problem A to be NP-complete:
1. prove A is in NP => outline steps to verify solution in polynomial time
2. prove A is in NP-hard => reduce B to A where B is NP-complete/np-hard
A <= B (A can be reduced to B), 3SAT <= Subset SUms

Make sure to state why it is polynomial as well.

Building Reductions

To convert non-decision
problem to decision , add a
random variable (k in the case of
steiner).

Continued on Next Page...

Building a reduction from SAT to 3-SAT, to prove SAT is NP-Complete.

Building a Reduction from 3-SAT to ST, to show that ST is NP-Complete

Boolean Satisfiability (SAT) Problem: NP Complete.

3-SAT Problem: Every clause must be exactly length 3.

Steiner Problem (ST): Optimization Problem, NP Complete

What do reductions tell us:

Vertex Cover Problem (NP-COMPLETE)

Given a graph G = (V, E) and an integer K, is there a vertex cover with at most
K vertices in G? A vertex cover is a subset
W of V such that |W | ≤ K, such that every edge in E has at least one endpoint
in W. In other words, ALL EDGES TOUCH A VERTEX IN W.

Dominating Set Problem (NP-COMPLETE)

Given a graph G = (V, E) and an integer K, is there a dominating set with at
most K vertices in G? A dominating set is a subset W of V such that |W| ≤ K,
such that every element of V − W is joined by an edge to an element of W.
EVERY VERTEX NOT IN THE SUBSET, IS CONNECTED WITH AN EDGE TO
ANY ELEMENT IN THE SUBSET.

Vertex Cover -> Dominating Set Reduction

Recognize that VC cares about ‘covered edges’, and DS cares about
‘dominated nodes’. Add a node to G’ for each edge in G, and attach the
endpoints to it.

the edge in 3 -> 4 becomes 3 -> 34, 34->4, with an edge in between.

Isolated nodes don’t have an edge, so they don’t need to be part of vertex
cover, but need to be part of dominating set. Therefore
K’ = K + #(isolated nodes in G).

VC=
DS=

Counting Inversions (P) problem, not a decision one.

More Types of Problems
ALL NP PROBLEMS ARE DECISION
PROBLEMS.

Input: Array A[1...n]
Task: Count the number of pairs where (i < j) and A[i] > A[j]. In other words, find the
number of pairs where the smaller number is ahead of the larger number.

For array [1,4,3,2], the NUMBERS (4,3), (4, 2), and (3,2) are inversions. 3 inversions total.

Brute Force Algorithm is O(n^2). Can
count maximum of n*(n-1)/2 inversions.
Can solve faster with CountInversions
Divide and Conquer.

Counting Inversions (Divide and Conquer)

HELPER FUNCTION CALLED COUNTAPPENDEDINVERSIONS()
Input: Two arrays A[1...n], B[1...m]
Task: Count the inversions of [A[...], B[...]] in O(n+m) time.

Given A=

B=

If (10, 6) is an inversion, everything right of 10 is
also an inversion of 6, since arrays are sorted!

We can use CountAppendedInversions() for a divide and conquer algorithm
for counting inversions in nlogn time.

Split array in half,
combine the two
arrays with our
helper, then merge
them
back together,
returning the
combined
inversions of the
left, right, and
combined together.

INTER: OUTSIDE (INTER-GALACTIC), OUTSIDE OF
SUBSET
INTRA: INSIDE (INSIDE THE SUBSET)

Quicksort vs Merge Sort

Quick Sort sorts the components by comparing each component
with the pivot while Merge Sort splits the array into two segments
or subarrays on repetition until one component is left.

worst case
quick sort:
O(n^2),
theta(n^2),
under bounded
nlogn if
smallest pivot
is element
every time
Average:
O(nlogn)

worst case merge sort is nlogn

If all nodes are shaded, is minimum spanning tree algorithm.



To prove Steiner reduction is correct, show that instance I is a Yes-Instance
of 3-SAT IF AND ONLY IF                            is a YES-Instance of ST.
To prove a reduction is correct, you need to prove:

“If” (Solution a -> Solution B)1.
 “Only if” (Solution B -> Solution A).2.

1. Choose a Problem B to reduce to.
Let’s reduce the Resident Hospital Problem to Stable Matching Prob.a.

2. Transform a small instance of RHP into an instance of B.

3. Transform a solution from B instance into a solution to the RHP instance.

4. Design an algorithm to transform any instance I of RHP to an instance of B
 Clone hospitals, with all having same preference list. Once this is done, is
SMP instance.
5. Design an algorithm to transform a solution of B into a solution for RHP.
The only thing different about M from a possibly-stable RHP solution would
be the subscripts on the hospital-slots. If we erase those, then since each
hospital-slot had one match and each hospital had s(h) hospital-slots, each
hospital in the RHP solution will now have s(h) matches, as we expect.

Solving the algorithm (GREEDY)
Given an instance I of problem create a new instance I’.1.
Sort the 1/16 weights of array W in decreasing order. Pair them up.2.
Combine the weights and values of them, put into I’. w_i + w_j, v_i + v_j3.

W = [1, 2]a.
V = [1/16, 1/16]b.
This becomes W=[3], V=[1/8] c.

Once all 1/16 weights are eliminated, repeat for 1/8, 1/4, and 1/2.4.
At the end, there will be multiple 1/2 items. Select the two items with
the highest value. That is the solution.

5.

Proving Reductions are Correct

What is a good solution for I?
Since I is a Yes-Instance of 3-SAT, there must be some assignment of truth
values that makes at least one literal true in every clause.
What is a good solution for I’?
The solution to an ST problem is of at most k edges that connect all the
shaded nodes.
Given a Yes solution of I, how can you choose I’ so that it’s Yes also?

Finish the proof to show that I’ is actually working, and is a soln to instance.

Common Algorithms and their uses
Breadth first search - Shortest Path Algorithm, Level Order Traversal
Kruskal’s Algorithm - Minimum Spanning Tree
Prim’s Algorithm - Minimum Spamming Tree
Dijkstra’s Algorithm - Shortest Path Algorithm for graphs with weighted edges
Topological sort - Order vertices of directed acyclic graph
Greedy Clustering Algorithm - Maximize similarity within cluster, Minimize
outside of cluster.

Graph Vocabulary
Complete: Every node is connected to very node in the graph.
Directed: Edges have directions (arrows).
Weighted: Edges have weightings signifying difficulty.

Knapsack with Structured Weights (Tutorial 6)

Select a subset that maximizes the total value of S,

but keeps the total weight below C. 
The regular knapsack problem cannot be solved polynomially.
Structured weights constraint: Assume that C=1. Assume there is an unlimited 
of  1/16, 1/8, 1/4, 1/2 items, all with value 0. Weights can only be 1 of those 4.

There are n items. Given a positive integer array 1 ..n of V representing values,
and another array W of positive integers 1 .. n representing weights,

Knapsack Exchange Argument

Use an exchange argument to prove that if an optimal solution uses c
items of weight 1/16, it uses c of the highest value 1/16-weight objects. 
Imagine that Solution S (subset of {1, 2, .. n}) uses c items with weight 1/16,
but NOT the c highest value 1/16 weight items. You can always swap in a
higher-value 1/16-weight item to get a better solution, so S could not have
been optimal. The same reasoning is applied for 1/8, 1/4, 1/2. We have
unlimited supply of dummy items, so this works, and is optimal because of
the exchange argument approach.

Proving that the optimal Knapsack Solution uses even number of weights

Suppose not, that you have an optimal solution that uses an odd number
of items. If you add up all the weights in the solution, then the numerator
has to be odd also. Since C = 1 = 16/16, we can always add at least one
more 1/16 weight item. This is why we need an unlimited supply of 0 value
items of 1/16, 1/8, ... 1/2

Coin Change Problem

Greedy Clustering

has a better worst case runtime then quickselect

maximize the minimum intra-category edge similarity.

Deterministic Select

Deterministic  Select. Group elements into groups of 5 and find medians of each group. We get floor
of n/5 groups. To select pivot, group A into groups of 5 and find medians of median using a recursive call to
deterministic quickselect.

Stock Market

Graphs

SMP

RHP

QuickSelect

Best case: O(n), worst case O:(n^2)

QuickSelect Recurrence



#1

#3

#2

True, False, or Open Q’s? For NP-COMPLETE (Tutorial 10)

“if X can be reduced to X’, X is P, and X’ is NP, then is X’ in P?

ANS: Open question. depends if P=NP or P!=NP.  If P!=NP,
then it is false because  X’ could be NP complete, and not P.
If P=NP however, then it could be possible for X to be in P.

Imagine X and X’ are decision problems, where both problems have Yes and  No
Instances.

“if X can be reduced to X’, and X is NOT in NP, then X’ is not in NP.

If an NP-complete problem “subset sums” is a special case of
Partition, then Partition is NP-complete, not the other way
around.

If a problem is in NP, and P!=NP, is the problem NP-complete?

Answer: NO, you must do a reduction to prove that it is NP-hard, and thus NP-complete.

Can SAT be solved polynomially? No, depends on if P=NP

Divide & Conquer, Master Theorem

To solve a recurrence:
1. Draw a recursion tree, sum work done at all nodes at all levels
2. The Master Theorem, only works for specific forms of recurrence

Drawing the recursion tree

Work at level 1

Work at level 2

Because work at each level
gradually decreases, it’s a
SUM OF INFINITE SERIES.

+ + + = =

+

It’s O(n) because if the sum of the infinite geo
series is constant, and it occurs at every level n,
it’s c*n which is O(n)

r is work at each level

+

+

+ + =

=

Side going down fastest (1/3)
is upper bound, side going
down slowest (2/3) is lower
bound.

Master Theorem

Short Version given a, b, and n^k

Flipped Version

Long Version

#1

#2

#2

#1

#3

#3

Master Theorem Constants

No, b is not a constant. Is sqrt(n)

a = 1 and b = 2
which means
log_b(a) = log_2(1) = 0,
and f(n) = 1 = n^0. 
in case 2 of the Master
theorefore, T (n) ∈ Θ(log n).

a = 1, b = 4, d=1
 means log_b(a) = log_4(1) = 0.
since d > log_b(a) = 1 > 0, case 3
applies.

To check regularity condition:
a*f(n/b) = f(n/4) = n/4, and n/4 <
δn for any δ in the range 0.4 <
δ < 1. So case 3 applies, and
T (n) ∈ Θ(n).

 or n=3^i

n=3^i
log_3(n)=i

Articulation point:
Two connected components c_1 and c_2
n G where the only path from c_1 to C_2 goes
through V. T contains a subset of edges in G,
so it cannot move any additional path
apart from the one through V. Therefore,
V is an articulation point.

Stock market Answer

diameter: largest value of
smallest # of edges on any
path b/w 2 nodes (i.e. b/d, 4
h↔g)



The clauses in (C)
ensure that the selected edges form a matching. Specifically, these make sure that if
e_p, e_q have a common endpoint, then at most one can be selected in the matching.

Quicksort

Divide and Conquer

Find Position Divide & Conquer

It’s O(n) because if the sum of the infinite geo
series is constant, and it occurs at every level n,
it’s c*n which is O(n)

Recurrence relation for the runtime of QuickSort:

Ignoring floors, ceilings, constants for recurrence

SAT

Independent Matching Problem

The clauses in (A) ensure that at exactly one
edge is in each position of the clique.

The clauses in (B) ensure that each edge is
assigned to at most one position of the
independent matching.

The clauses in (D) ensure that for any 2 edges in the selected matching, there is no
edge which connects the endpoint of one to an endpoint of the other. 

Divide &
Conquer

If an NP problem has a
polynomial number of
possible certificates,
then it is in P. It can be
solved in polynomial time
because you can 
just check every single
certificate to verify it
working. Polynomial
num of certificates *
polynomial time to check
each.

Deterministic Select


