CPSC 320 Final Problem A Problem A Theory

Types of Problems instance solution P: Can create algorithm to solve in polynomial time.
Jp—— di : NP: Can be verified in polynomial time.
(SAT) : 3 Building Reductions " .
75?"[93" sa_t'Sf'ab'l'ty SAT Problen-n NP ComP_lete . g NP-complete: A problem A that’s NP, in which you can reduce any other NP
Given a series of truth assignments, is there a way to make the entire problem B to A polynomially. It’s possible to reduce any NP problem into 3-SAT.

statement true?

- This satisfies the clause. Problem B Problem B NP-hard: A problem is as hard as every other problem in NP. NP hard problems
Xy W Xav Xav X, X1=F certifying if it's correct Convertto | instance FUN: solution | Convertto can possibly not be verified in polynomial time.
Y, X5=T plygin the values. P'roblem B solver (black Problelm A P != NP No one has ever been able to solve an NP problem polynomially. If
— X2=T s polynomial, meaning it it’s in class NP. instance solution someone successfully does so, then ALL NP problems are solvable polynomially.
Ay X3 =T Solving the algorithm For a problem A to be NP-complete:
XovXavX; X4 =T Brute force: N . — . . 1. prove Ais in NP => outline steps to verify solution in polynomial time
- E 1.Make list of variables -X1.--.. X Buildingareduction from SAT to 3-SAT, to prove SAT is NP-Complete. 2. prove A is in NP-hard => reduce B to A where B is NP-complete/np-hard
NoV Xy 2.Try every assignment of truth values to (convert to problem b instance) A<=B (A can be reduced to B), 3SAT <= Subset SUms

Converting SAT instance (Prob. A) to 3-SAT instance (Prob. B) P
Instance | of SAT. Instance I’ of 3-SAT. For reduction to work, | is satisfiabfe

these variables

= {all problems for which a known polynomial algorithm exists}
3.Return YES if satisfies, NO otherwise.

To convert non-decision

roblem to decision,add a P NP = blems chic o oy iifie
:)andom variable (k ir: thecaseof 4 Repeat for 2°n different assignments in only if | !S.)) _) . e NI {all problems for which an efficient certifier exists}
" worst case. 1.Imagine | has clause with two literals, (Xav Al). Toobtain I’ from |, we NP-Hard = class of decision problems to which all NP problems
steiner). Worst case run time: SE(?]Q"] replace this clause with (X3 v X3 v ¥ and (Xa v X3 v Y). Atruth HTCRAES could be reduced to in polynomial time

assignment that satisfies the original clause, satisfies this one. Yis NP-Complete = NP] NP-Hard
useless, since it is true in first and false in the other.
2.Imagine | has clause with 1 literal, (X;) . Replace with (X5

3-SAT Problem: Every clause must be exactly length 3.
Better for NP-completeness reductions, since it is constrained. (We will

v¥v f}Alwllwr way to write the definition of NP-Hard is {X : Y < X, VY € NP}.
reduce from 3-SAT to problem we want to prove is NP-complete). A

(Xsv¥vi) VY VZ) and (XsvYV2ZE) Another way to write the definition of NP-Complete is {X : X € NP and ¥ < X, V¥ € NP}
Steiner Problem (ST): Optimization Problem, NP Complete 3.Imagine | has 4 literals, (X; v X2 V X3 V X). Replace with:

Given the graph below, how do we connect the shaded parts (S) with least (X vX2VY) ATV X3 v Xy).
amount of edges? Optimization problem, minimizing edges connecting. ' 3

5 If one of the first two literals (j ¢, X, or X} is true, first new clause is
K=size of solnu " A2

- Decision Problem: Output can be satisfied. Must make Y false.
want as input. either a yes or no. For Steiner, Yesis 4. To generalize, convert any clause with k > 3 literals (hvigv...vi)
when it connects all shaded nodes, Into 3 literals. Generalization:
with edge amount < k. If u specify vV X)) A (K VIV X)) A (Kige VIV Xiga) A

edge amount < any other solution, is
NOT a decision problem.

Anlnstance of ST: (7 = (V, F), § C V, and k, where 1 < &k < n.

A iii—ny Y5V X)) A
A (Kisima V2V Xisge—s) A (K

3 Vi Vi)
8 Xigts Kittye s X gogy b0 "Bk the °

ST is good: Edges of E’ (soln) connect all vertices in S, and |IE’| <= K There are k:— 2 new clauses in total. using k -3 new v
STis optimal: Edges of E (soln) connect all vertices in S, |E’| < = the size of clanses together. Overall, an algorithm to do this takes time G(k). NP EP NP =P
any other solution for the instance. 5. TRANFORMATION INSTANCE ALGORITHM: Use name TRANSFORM- .
Certifying the algorithm CLAUSE to refer to algorithm. The algorithm converts an instance | of : — | P | NP | NP-Complete | NP-Hard
(1) Check that edges in E’ have size at most k, (2) the edges connect all shaded SAT to an instance I of 3-SAT, working clause by clause to call | Solvable in Polynomial Time ___ .
vertices with a DFS on the subgraph of G formed by deleting all edges but the ones TRANSFORM-CLAUSE for K > 3, and for K < 3 calling on step 1 and ’;}{oil;tw“ Vmif‘;]:l;:mbrl)d“'?m;’?lrmmc T LA j 7
in E’, starting from any shaded nodes. During DFS, 'we “check off”.all shadefﬁ r\odes. SAT instance 9SAT instance (s oy ey s -
If [E’l <= K and all shaded notes are checked off, E’ is a good solution (Yes). is in XaV XV Y
haded i . i N -~ AgV A5 1
CLASS NP. If all nodes are is minimum sg g tree algorithm. XsvX; = { XU EVT More Types of Problems
Vertex Cover Problem (NP-COMPLETE) S . ; . ALL NP PROBLEMS ARE DECISION
. . . . o TIVXaVYa Counting Inversions (P) problem, not a decision one. progLEMS.
Given a graph G = (V, E) and an integer K, is there a vertex cover with at most XiVX VAV = F
K vertices in G? A vertex cover is a subset }:3 hd)ﬂ Vi_'_’ Input: Array A[1...n]
W of Vsuch that [W | < K, such that every edge in E has at least one endpoint XavYaVvY, Task: Count the number of pairs where (i < j) and Ali] > A[j]. In other words, find the
inW. In other words, ALL EDGES TOUCH A VERTEX IN W. X = E v¥v h number of pairs where the smaller number is ahead of the larger number.
Dominating Set Problem (NP-COMPLETE) % M ;}” i ;_‘ For array [1,4,3,2], the NUMBERS (4,3), (4, 2), and (3,2) are inversions. 3 inversions total.
Given a graph G = (V, E) and an integer K, is there a dominating set with at VBV . . . function CouNTINVERSIONS(A[L..1])
most K vertices in G? A dominating set is a subset W of V such that |W| < K, Xi1vXaVYs Brute Force Alg°”th?' is 0(n"2). Can inversions + 0
such that every element of V - W is joined by an edge to an element of W. — — YvXsVYs count maximum °f n*(n-1)/2 inversions. for i € [L.n] do
EVERY VERTEX NOT IN THE SUBSET, IS CONNECTED WITH AN EDGE TO HVXRVLVIVEVE = | Fux, vy, g_a"_:“"edfzste' with Countlinversions for j € [(i
e ivide and Conquer. if A
ANY ELEMENT IN THE SUBSET. (convert B solution to problem A Solution) Y7v X5V Xe "',’\'. rsions — inversions + 1
. . . o [Transform solution algorithm: This algorithm o transform a solution (YES or NOJ to the 3-54T 1if
Ve 2.3 BS: 2y GiEl Ds:{1,2} nee ' back to a solution for 1 simply uses the exact sume solution (YES ORt NOJ. e
Algorithm 3 to-3-SAT(]) takes time linear in the length of 7, and the algorithm to translate the end for
solution back takes O(1) time. . - — peturn invarsions
What do reductions tell us: Counting Inversions (Divide and Conquer) ., function
1.1f our reduction’s algo takes O(f(n)) time, and black box solver for B HELPER FUNCTION CALLED COUNTAPPENDEDINVERSIONS()
also takes O(f(n)) time, runtime to solve problem A is also O(f(n)). Input: Two arrays A[1...n], B[1...m]

2. If our reduction takes O(g(n)) time, and there is no algorithm for problem Task: Count the inversions of [A[...], B[...]] in O(n+m) time.
Athat runs in O(g(n)) time, there CANNOT be an SOLVING algorithm that function CoUNTAPPENDEDINVERSIONS(A[L.n|, B[1..m])

runs in O(g(n)) time. Remember that I* % NI?, so THIS IS HOW WE USE inversions + 0,i + 1,7 + 1
REDUCTIONS IN AN NP-COMPLETENESS PROOF. while i < n and j < m do
Vertex Cover -> Dominating Set Reduction 3. Our reduction from SAT to 3-SAT tells us that if 3-SAT can be solved in if Ali] < Blj] then > Ali] is at least as small as any remaining element of B
Recognize that VC cares about ‘covered edges’, and DS cares about polynomial time, then ANY problem in NP can be solved in polynomial i
‘dominated nodes’. Add a node to G’ for each edge in G, and attach the time. else & B[j] is smaller than every remaining element of A
endpoints to it. Building a Reduction from 3-SAT to ST, to show that ST is NP-Complete inversions + inversions +(n — i +1)
With K=2, both instances are “yes”. With K=1, both instances are “no’. Converting &-5ATinstance (Prob. A) 1o STinstance (Prob. B] et Givena=[2 [o [w[u][] . |
If we reduce from 3-SAT to ST in polynomial time, we can “chain” together a end fr |
@ K=2 reduction from any problem to 3-SAT with the reduction from 3-SAT to ST, to get'a"“'l “'h_']"- . B= | 2 ‘ L. | 46120 |
= a larger polynomial reduction from that problem in NP to ST. Going from ST -> "’t‘-'"“_' TSNS If (10, 6) is an inversion, everything right of 10 is
3SAT isn’t interesting, since all it does is say that ST can be reduced into 3satend function also an inversion of 6, since arrays are sorted!
(el ‘°°"§’9" to pmbl_em b |nstar1ce) X . We can use CountAppendedinversions() for a divide and conquer algorithm
G @ o 1 leen a 3-SAT instance with four variable gadgets (w, X, y, 2), turn into graph, for counting inversions in nlogn time.)]
- with shared hub node. Splitarray in half,
i _ R _ . function CoUNTINVERSIONS&SORT(A[L..n|) combine the two
D001 26D) if n < 1 then arrays wi
— S . A, = ys with our
S A return (0, 4) helper, then merge
VC=4{2, 3} T end if them
Ds={1,5,2, 34} — n::i <1— /2] back together,
We can choose independently for each variable to go “left” (true) or “right” false. invy, Left + CountInversions&Sort(A[1..mid]) turning th ’
the edge in 3 -> 4 becomes 3 -> 34, 34->4, with an edge in between. We make k=8 so there’s JUST ENOUGH edges to enforce you choosing one edge or ,"“' Ly e = O,Im "wmo_"s r 3 "ml_(re urr}lng e
) ’ I the other. invg, Right + CountInversions&Sort(A[(mid + 1)..n]) combined
Isolated nodes don’t have an edge, so they don’t need to be part of vertex A . T ‘)) . iNVeommiine ¢ ConntAppendedinversions(Left, Right) inversions of the
cover, but need to be part of dominating set. Therefore 2.Givenaclause (W V TV), enforce it so that the tree is good if the clause is = N
b= K+ #(0 lated nodes in G). good, AND that each variable cannot be both true and false. SortedArr +— merge(Laft, Right) left, right, and
K’ =K+ #{isolated nodes in G). ! return (invy + invg + 0V pine. SortedArr) combined together.
Reduction: Given an instance (G, K) of Vertex Cover, construet an instance (G', K') end function Master Theorem Case 2:

of Dominating Set by adding one node v, for each edge e € E, and connecting this
node to the endpoints of e. That is, if e = {z,y} then we add the edges {v,,x} and =~
{ve,u}. NS
Choose K" to be K plus the number of isolated nodes of G.

T(n) =2T(n/2) + cn a=2,b=2,l0g,2=1 T(n) = @(nlogn)
fin)=cn € O(n")
Quicksort vs Merge Sort

Runtime: The time to generate the new nodes and edges is O(m).

worst case merge sort is nlogn

Correc : The following is a formal proof of this algorithm’s correctness, using For each variable, we need to connect the shaded node between the + and -.

the same "if and only if’ style proof as assignment 1 question 4.3 and 4.4 Whichever way we connect it is what we choose for the truth value. Quick Sort sorts the components by comparing each component
Suppose that G has a vertex cover W of size at most K. Since W is a vertex cover of 3. Complete reduction from 3-SAT to ST such that ST instance is YES if and only if with the pivot while Merge Sort splits the array into two segments
@, (i) all non-isolated nodes in V' — W are joined by an edge to the nodes of W and 3-SAT instance is YES also. or subarrays on repetition until one component is left. Phvot

(ii) all nodes v, are also joined by an edge to the nodes of W. So the set W' which worst case

contains all nodes of W, plus the isolated nodes of @, is a dominating set of G' and Nodes: We first create a single hub node. Then, for each variable #; of instance I, we create a node quick sort: [e]als]2]e]e]«]1]z]

has size at most K'. labeled @i and one labeled #;, and one additional "pin" node p; (the unlabeled node). Then for each (n"2),

Conversely, let W' be a dominating set of G'. Note that W’ must contain all isolated clause e = (It V iz V I3}, we create a node labeled
nodes of G'. Let W be obtained from W' by
any v, node in W' by one of e’s endpoints.

{Recall that each !; is either e variable x; theta(n"2),

B 2 - its pecaki = 3 . - o o A rariahale ags <=3 »=3

arding isolated nodes, and replacing ' it n(,,dt!on z;.) So, | S, F]mt one hub, n pins, n variable nodes, 2 qer hounded

hen the nodes of W are all nodes of G, negated variable nodes, and ¢ clause nodes, for a total of 37 + ¢ + 1 nodes. [=]z]=]"] |E| [e]s]s]¢]
=1 <=h

nlogn if
and have an edge to all of the v, nodes. This means that every edge of G has at least Edges: We put edges between the hub and each of

well as edges between p; and each of — gmallest pivot
one endpoint in W, and so W must be a vertex cover of G. [Note: Without the extra r; and #;. Also, we connect each clause node ¢ to rals Iy, Iz, and I3, The total number

r; and T;

is element

v, nodes, this part of the reduction correctness would not hold.] of edges is 4n + 3¢. These nodes and edges comprise our graph G. every time l:‘ = |I| e
We let the set of “shaded” node § be the hub, the n pin nodes and the ¢ clanse nodes. So, there are Average:
INTER: OUTSIDE (INTER-GALACTIC), OUTSIDE OF . o e e o waral. Ol
SUBSET Finally, we let k = 2n + ¢. Make sure to state why it is polynomial as well. hd

INTRA: INSIDE (INSIDE THE SUBSET) Continued on Next Page... [¢] Iz‘

Proving Reductions are Correct
To prove Steiner reduction is correct, show that instance | is a Yes-Instance
of 3-SAT IFAND ONLY IFI’ = (G, S, k) is a YES-Instance of ST.
To prove a reduction is correct, you need to prove: =
1.4If” (Solution a -> Solution B) b
2. “Only if” (Solution B -> Solution A). & i the pnmber of categories, 1 <c<n

If I is a Yes-instance of 3-SAT then I’ is a Yes-instance of ST
What is a good solution for 1?

Since | is a Yes-Instance of 3-SAT, there must be some assignment of truth
values that makes at least one literal true in every clause.

What is a good solution for I’?
The solution to an ST problem is of at most k edges that connect all the
shaded nodes.

Given a Yes solution of I, how can you choose I’ so that it’s Yes also?
SOLUTION: We designed our reduction so that one "variable gadget" represents the truth (or
falsehood) of each variable. Thus, in each "variable gadget”, well use two edges to connect the "pin"

to the hub via the variable node ; if 2; is set to true, or via &; if «; is set to false. This is possible
using 2n edges in total.

Greedy Clustering maxi

fum.t:on Ll GRrEEDY(n, E.e)

is the mumber of photos

create a list of the odges of E
let © be the eategor: n with
Num-C «
while Num-{
remove the ki
if p and p are in diffe
"merge" the categories col
Numn-€ Num-C — 1
return O

1 decreasing order by similarity
i phioto in its own category

n & Initial number of categories

= ecdo

west-similarity edge (p, ', 5) from the list
snt categories of C then

ning p and p’

directed graph € sentod

11 el represent similarities

thy
similar reel mnmber 1 <
Wi i the similarity hetween two

rics) and

Then, pick the first literal that is true in each clause c;, and choose the edge connecting c; to that

ize the minimum intra-category edge similarity.

t the

o e the i similanty between

Common Algorithms and their uses

Breadth first search - Shortest Path Algorithm, Level Order Traversal
Kruskal’s Algorithm - Minimum Spanning Tree

Prim’s Algorithm - Minimum Spamming Tree

aset of edges of the form (p, g,), where s is the similarity of p and 3 Dijkstra’s Algorithm - Shortest Path Algorithm for graphs with weighted edges

Topological sort - Order vertices of directed acyclic graph

Greedy Clustering Algorithm - Maximize similarity within cluster, Minimize
outside of cluster.

Graph Vocabulary

Complete: Every node is connected to very node in the graph.

Directed: Edges have directions (arrows).

Weighted: Edges have weightings signifying difficulty.

Knapsack with Structured Weights (Tutorial 6)

There are n items. Given a positive integer array 1..n of V representing values,
and another array W of positive integers 1 .. n representing weights,
Selectasubset § C {1, ..., 7 }that maximizes the total value of S,
but keeps the total weight below C.

The regular knapsack problem cannot be solved polynomially.

walr of modes g € Oy and 2 € Ca. We st produee gorizatio sartition inte & (noa-cmp N PR _ f P
literal. Note that this literal node must already be conneeted o the variable’s hub and pin, since "y, f,:_‘:l f““:“'m‘;ﬁ"h:_"]:]:"‘I'mm-w,l_l:'“_ ‘IN'_I"“L'“ g rization - partition it & (maenpty) - stryctured weights constraint: Assume that C=1. Assume there is an unlimited
we ensured we always connect in the node corresponding to the variable’s truth value. We use ¢~ Nou wo'll prove this greedy approach sptimal. of 1/16,1/8,1/4,1/2 items, all with value 0. Weights can only be 1 of those 4.
additional edges here. . .

L list of the E in deerensing order by similarity, Solving the algorithm (GREEDY]
Finish the proof to show that I’ is actually working, and is a soln to instance. - ; 1.Given an instance | of problem create a new instance I’
SOLUTION: Above we built a candidate solution using exactly 2n + ¢ edges. Does it actually 2 Initial it own ¢ 2.Sort the 1/16 weights of array W in decreasing order. Pair them up.
connect all shaded nodes? Every variable’s pin node is connected to the hub, as discussed above. 5 yivialise the catesory cont to . . . AR R .
Further, every clause is connected to a true literal, which must in turn be connected to the hub given 3.Combine the weights and values of them, put into I’. w_i + w_j, v_i + v_j
the way we chose the variable gadgets’ edges. Thus, our ST "solution” is a valid certificate showing 1. Whik: we luve more than k o W=1[1,2]
the answer o the ST matancs s YES. Remove the higlst similarity edge (o, 1) from the st b.V=[1/16,1/16]

If I’ is a Yes-instance of ST then [is a Yes-instance of 3-SAT n,\ IF s and o are ot i the same category: Merge a's sl o's catogories, anel redice the category c.This becomes W=[3], V=[1/8]

SOLUTION: Since I’ is a Yes-instance of ST, there is a set of at most k = 2n+ ¢ edges that cormenl.s
up all shaded nodes of G. By part 1 above, this set of edges can connect exactly 2n + ¢ + 1 nodes
into a tree.

i-.Cqu-m The input cansists of & graph G = (V, E)
problom asks: does the graph contain a clique of size

There are n + ¢ + 1 shaded nodes that must be connected; so, n of the unshaded nodes can also | % a0 edge.

be connected. For every variable gadget, at least one of its "variable” nodes (positive or negated) |
must be connected (because there's no other way "out" of the variable's pin, w is why we called
it a "pin"). Since this all r ilable nodes, we must choose exactly one of each
positive/negated variable pair. Call these connected variable nodes the "chosen" nodes. Furthermore, |
each clause ¢; must be connected to at least one of its literals, and moreover, should be connected to
a "chosen" node.

Independent Set: The input consists of a graph &
Independent Set problem asks: does the graph contai

wlements in W are joined by an edge.

elanse is a disjunction of some of the variables or their complements

(Note that it can be possible to connect all 2n+ e+ 1 of the shaded and chosen nodes with k = 2n+¢
edges, where some clause node has more than one incident edge; this does not pose a problem in
our reasoning.)

The problem consists in answering the question
each variable that makes every elause of the instance TRUE?

Now consider the truth assignment corresponding to the "chosen" nodes, that is, set x; to be true if

z; is a chosen node, and set z; to be false if Z; is a chosen node. Since every clause node has an edge .
5 . ; . . QuickSelect Recurrence
to at least one chosen node, all clauses in our 35AT instance are satisfied by this truth assi

and so the instance's answer is Yes.
You've now shown that ST is in NP and is NP-hard (because 3-SAT—which is known to be NP-
hard—is polynomial-time-reducible to ST). Therefore, ST is NP-complete! QuickSelect

ent,

ifr=00rn=1

Tgs(n) = {1

Tys(3n/4) + en otherwise

function QUICKSELECT(A|L..
numbers, where 1 < k <n
if n > 1 then
Choose pivot element p = A[1]
Let Lesser be an array of all elements from A less than p

Coin Change Problem n), k) // returns the element of rank k in an array A of n distinct

SOLUT IOI\.

t would be handy if Solo hsd 0 and negative entrics,

s this function SOLN" 1o shnilate this. Let Greater be an array of all elements from A greater than p
!I'J < i thens return i 3 if |Lesser| = k - 1 then
else iF § — 0 then returs 0 e Best case: O(n), worst case 0:(n"2)
clse return Sola|i] else

if [Lesser| > k - 1 then // all smaller elts are in Lesser; k is unchanged

funetion DIP-ClaxGe(n) return QuickSelect (Lesser, k)

i n < 0 then return 50057 (n) else// [Lesser| < k-1
el // subtract from k the number of smaller elts removed
e Assnmes i > 0 otherwise, just mn Sous’ return QuickSelect(Greater, k— |Lesser| —1)
CTEALE i T AT else
Tor i from | o n do return A[l]
Soluli] + the minimm of
Sonw'i — 25 1,
Sonx = 10§ + 1, nawld
SOLN(E=1) + 1

Max Cut Greedy
LA=0,B=10;
2. ForveV:

return Solun|

Deterministic Select has a better worst case runtime then quickselect Y € NP}

Deterministic Select = Worst Lase yuntue = B10). |

4 X=X+
5. Return (A, 13]

Good, but we t op’—w-\cj.'.

Free m proposes to the high
whom he

Deterministic Select. Group elements into groups of 5 and find medians of each group. We get floor
of n/5 groups. To select pivot, group A into groups of 5 and find medians of median using a recursive call to
deterministic quickselect.

Stock Market

The Stock Marfet -

o G

Tiny =0 (nl.;qn.)

Quick Select ()

Algorithm MaximalPoints(P)
sort P by increasing x-coordinate
return MaximalPointsHelper(P, 0, length[P]-1)

SMP
3MP=F5N§4, F’orr,e =_\£Ln‘ 1)

AMlgorithm MaximalPointsHelper(P, first,
if first = last then
return { P[first] {

last)

Emle. Shw;ﬂeu s O () -

Graphs
mid + [(first + last)/2| ekeul aFion P‘hﬂ{"
81 + MaximalPointsHelper (P, first, mid) Oiometers the smales b/

last)

Sr + MaximalPointsHelper (P, mid+1,

FIDIAM

y 0w 3 [
q + point of 8r with largest y-coordinate R lﬁmﬂf- OL “h“) 5

return Sr union UndominatedPoints(S1, q)

O'rhlnfm.ﬂ = .D[:\’.'i i

I a positive integer k. The k-clique
That is, we want 1o know if there
is & subset W of k vertices in V' with the property that every two elements in W

) and & positive integer k.
pendent set of size k7 That
is, we want to knew if there is o subset W of k verticos in V' w::h the property that no two

SAT: The input is a collection of m clauses over n boolean variables X, Xy, ...

here & way to assign truth values to

3. PiekX ¢ {A.H} minimizing | E(w, X);

4.0nce all 1/16 weights are eliminated, repeat for 1/8, 1/4, and 1/2.
5.At the end, there will be multiple 1/2 items. Select the two items with

3 the highest value. That is the solution.
are joined

' Knapsack Exchange Argument

Use an exchange argument to prove that if an optimal solution uses ¢
items of weight 1/16, it uses c of the highest value 1/16-weight objects.
Imagine that Solution S (subset of {1, 2, .. n}) uses c items with weight 1/16,
but NOT the ¢ highest value 1/16 weight items. You can always swap in a
higher-value 1/16-weight item to get a better solution, so S could not have
been optimal. The same reasoning is applied for 1/8, 1/4, 1/2. We have
unlimited supply of dummy items, so this works, and is optimal because of
- the exchange argument approach.

e

X,,. Each]|

Proving that the optimal Knapsack Solution uses even number of weights

Suppose not, that you have an optimal solution that uses an odd number
of items. If you add up all the weights in the solution, then the numerator
has to be odd also. Since C =1 =16/16, we can always add at least one
more 1/16 weight item. This is why we need an unlimited supply of O value
items of 1/16, 1/8, ... 1/2
4.1 Interval Scheduling Problem
THE PROBLEM. Suppose we have a set E of n events. Each event ¢ has a start time of
s(i) and an end time of f(i) are compatible if they do not overlap in time. We
would like to find a subset A € of compatible events that is the largest in size.

Two events

THE ALGORITHM. To solve this problem, our greedy algorithm, at each step, would pick
some event ¢ from set E, add it to set A, and then remove all events from E that are not
compatible with & It remains to determine which criterion we should use to pick the event
at each step. There are several possible choices here:

(1) pick the event that starts
(2) pick the event with the shortest duration
(3) pick the event that is the most compatible
(4) pick the event that ends first

irst

It turns ont that the first three choices do not lead to an optimal solution. The i
illustrates counter-examples for each of the three cases. The solution produced by each of
the po | greedy algorithms is highlighted in red, while an optimal solution takes up the
top row in each image (in image 3, all events highlighted in red are the most compatible
ones as they conflict with < 3 events while all black ones conflict with 4 events each).

age below

1 — — — — 3 —_— — —
—_— b —
i
—_ —
= —
oA Problem A
e
Ll 0 solution

!

B edgyro Convert 1o
Problem A
i E(MDB) solution

1. Choose a Problem B to reduce to.
a.Let’s reduce the Resident Hospital Problem to Stable Matching Prob.
2. Transform a small instance of RHP into an instance of B.

ri: hi h2 hi (1): r2 ¥l r3 rl: bl h2 1 b2 2 hl: r2 rl 3
r2: h2 hi h2 (2): rl r2 r3 £2: h2.1 h2.2 bl b2.1: rl 12 13
r3: hl h2 r3: hl h2_ 1 h2_ 2 h2_2: rl1 r2 r3

3. Transform a solution from B instance into a solution to the RHP instance.
SOLUTION: Running Gale-Shapley gives this solution: {(hs,m1), (hz,, rz), (hzg, ra)}-
That's already very close to the solution we found by hand of {(hy, ry}, (2, r2), k2, 72)}. It looks lik
we just need to erase the subscripts on the hospitals, since hospital-slots are no longer separate.
4. Design an algorithm to transform any instance I of RHP to an instance of B
Clone hospitals, with all having same preference list. Once this is done, is
SMP instance.
5. Design an algorithm to transform a solution of B into a solution for RHP.
The only thing different about M from a possibly-stable RHP solution would
be the subscripts on the hospital-slots. If we erase those, then since each
hospital-slot had one match and each hospital had s(h) hospital-slots, each
hospital in the RHP solution will now have s(h) matches, as we expect.
RHP EHP: m i heprfals n s vesidents. To fet tFa selufion fora
(naively check @ D, D) = O(me>

True, False, or Open Q’s? For NP-COMPLETE (Tutorial 10)
If X <, X', X is in P and X" is in NP, then X' is in P
“if X can be reduced to X’, X is P, and X’ is NP, then is X’ in P?

ANS: Open question. depends if P=NP or P!=NP. If P!=NP,
then it is false because X’ could be NP complete, and not P.
If P=NP however, then it could be possible for X to be in P.

Imagine X and X’ are decision problems, where both problems have Yes and No
Instances.

If X <, X’ and X is not in NP, then X’ is not in NP.
“if X can be reduced to X’, and X is NOT in NP, then X’ is not in NP.

SOLUTION: True. This is a hard one and requires proof. We will prove contrapositive, that if

X' were in NP, then X must also be in NP,

Let f be a polynomial-time reduction from instances of X to instances of X', Since we assume
that X' is in NP, there must be an efficient certifier for X', let’s call this algorithm Certifier-X"'.
To show that X is in NP, we construct an efficient certifier for X. This certifier takes an instance
I and a certificate, say €', computes f(I), and then runs algorithm Certifier-X* on (f(I),C). If
I is a Yes-instance of X, then I' is a Yes-instance of X', and so there is some polynomial-size
certificate that causes Certifier- X’ to output Yes. Also, if] is a No-Instance of X, then f(I) is a
No-instance of X', and Certifier-X' outputs No, no matter what the certificate is.

If an NP-complete problem “subset sums” is a special case of

Partition, then Partition is NP-complete, not the other way

around.

The decision problem Partition takes a set of integers 8, and returns yes if they can be 'partitioned’

into two disjoint subsets whose union is 5, such that the two subsets sum to the same value (half
the sum of elements in S). Partition is in NP,

Partition is a special case of another problem, Subset Sums, There is a very nice reduction that
proves that 3-SAT <, Subset Sums, Again assume Pl=NP

Statements This is sufficient evidence that Partition is NP-Complete,

SOLUTION: False. This special case argument is backwards. If ar
a special case of another probl
around.

P-Complete problem A is
3, then we can conclude B is NP-complete, not the other way T

It turns out Partition actually is NP-Complete, but you need to do a reduction to prove that.

Sebsed Sums

Gubser Sums
being NP Conplte
dos M
_;%'Hoh

T F Pactition
hen

is

NP- Canplee,
Sebset Sume s

If a problem is in NP, and P!=NP, is the problem NP-complete?

The decision problem Integer Factorization (IF) takes two numbers, n and &, and returns yes if »

at’:o.

has an integer factor less than & other than 1, and no otherwise. This problem is in NP. Despite
researchers looking for one for a very long time, there is eurrently no known algorithm that solves

this problem in polynomial time.
Statement: Assume P#ENP. Based on the above facts, we can conclude that IF is NP-Complete.
Answer: NO, you must do a reduction to prove that it is NP-hard, and thus NP-complete.

Can SAT be solved polynomially? No, depends on if P=NP

Statement: There is no positive integer ¢ such that boolean satisfiability (SAT) is in O(n®).

SOLUTION: Open Question. If P=NP, then every problem in NP has a polynomial time
algorithm. SAT is in NP, therefore there is an algorithm that solves SAT in polynomial time.

Conversely, if P#NP, then there is at least some problem in NP that does not have a polynomial
time algorithm. Since SAT is NP-Complete, every problem in NP can be reduced to it in poly-
nomial time. So, if SAT could be solved in polynomial time, then all problems in NP could be
solved in polynomial time, a contradiction to our assumption that P#ZNP.

Master Theorem Long Version

1. If f(n) € O(n) where ¢ < log,a then T(n) € O(n'8"). #1

2. If for some constant k > 0, f(r) € O(n°(logn)*) where ¢ = log, a, then T(n) € B(n(logn)¥*1). #2

3. If f(n) € Q(n®) where ¢ > log, a and af(}) < kf(r) for some constant & < 1 and sufficiently large

n, then T(n) € O(f(n)). #3
T(n) al'(n/b) + en® Short Version given a, b, and n"k
T(1)
T(n) € O(n*)ifa<b* #3
T(n) € O(n*logn) ifa=10b" #2
T(n) € O(n'%9) ifa>bkyy

Flipped Version
If T(n) = aT'(n/b) + O(nt
O{n")

Tin) = O(n'logn)
D(nlugh u:]

ifd = log,a #3
ifd=log,a g
ifd < logga

T(n) = (1)

#1

The Master Theorem: Let a > 1,b > 1 be real constants, and let T'(n) be defined by:

L. If f(n) € O(n'% ¢} for some € > 0 then T(n) € O(nlo%),

Case
Case

Case
and all n large enough, then T'(n) € ©(f(n)).

) for constants @ >0, b > 1, d = 0, then

al'(n/b) + f(n)

2. 1f f(n) € O(nlo= 2 logh n) for some k > 0 then T(n) € B(nlo= @ Joght!

3. If f(n) € Q(n'= %) for some € > 0 and af(n/b) < df(n) for some 0 < § < 1 7

Divide & Conquer, Master Theorem

To solve a recurrence:
1. Draw a recursion tree, sum work done at all nodes at all levels
2. The Master Theorem, only works for specific forms of recurrence

Drawing the recursion tree

Fn

T,(15)) + To(Z

2u)ren ¥ nz?
if nex

CAE | INFINITE

Vork of e leg] <=

T, ¢
=10

/\

en

Master Theorem Constants

T(n) = 5T(/n) +n

No, b is not a constant. Is sqrt(n)

T(n) =T(nf2)+1
a=landb=2

which means

log_b(a) =log_2(1) =0

and f(n) =1=n"0.

in case 2 of the Master
theorefore, T(n) @©(log n).

Work at level 1 T(”) — T(”/_” +n
. o | [Secbeleoefec ol
7 - -
SUM OF INFINITE SERIES. means log b(a) = log 4(1) = 0
/ \ sinced > log b(a) =1> 0, case 3
applies.
Work at level 2 ho PP N .
27 To check regularity condition:
Sen . Ten |, Loen 36| o [!) cn Nere b exh a*f(n/b) = f(n/4) = n/4, and n/4 <
T"‘ - 71 T l-m 7 = lebel &n for any & in the range 0.4 <
|] & <1.So case 3 applies, and
s v Ty \ [T(n) o(n).
cn z (‘[{) Ls som of infinle sedss lecage =< |
E 7
'l . PP
It’s O(n) because if the sum of the infinite geo
\.r‘w.’\/ series is constant, and it occurs at every leveln,
it’s ¢*n which is O(n) Articulation point:
Sum of dv 14 = [rs gt w Articulation point:
ris work at each level whnite ﬂ i b= et Two connected componentsc landc 2
oo 5 & LiL - O(m) n G where the only path from c 1to C 2 goe:
2 art = == for |r| < 1. * =k ¢ through V. T contains a subset of edges in G,
k=0 K s0 it cannot move any additional path
apart from the one through V. Therefore,
T.(LEN+ T -1-" +1) +en i Vs an articulation point.
. J(LEN) + T (R 1) CASE 2 FINLTE 4
diameter: largest value of
])] iF ned wrk. ot each | smallest # of edges on any,
== | path b/w 2 nodes (i.e. b/d, 4
€n Graphs heg)
/ \ -
—
% i Zpl 1=l {gmaan ©
/ \ / \‘- | +24244 g is en for < _ X
cn ! L L =
- m 7t 1 o lew R O
+ &Lt . \ T
) iy Ter? £Y'n =) RO SO
I:F_: ::; work ot Side going down fastest (1/3) 2) | [:
is upper bound, side going : a ® ¥ YO,
(, i r..m 1033" leels , down slowest (2/3) is lower (3)L' ? T/ S (") \Jj/.
! bound. = |15 3
L 0= | orn=ai e 5‘ o “ b IO, D]
i logn = (|p r-
i ‘w_m nlogan 9
et ot Js) \ v= legs m Stock market Answer
log_3(n)=i 0 L“ mji “) ® SOLUTION: All that we necd to do i check ench paint of I* anc at a tine.
>

 legh,
O (g0
Assignment

i€ nsle
TCRy+edn

level 0, werk &R

¢ sE 3 SQRT
T{.n)) {T(a] b W n7le Ch Lot & demote an o

ction for € is 3

)
< g, denote

Let p,q, whese p

the groedy strategy o 1o order

for O s

satisfactio

S(O) = {n

Lot € donote the

edemsents sppesr i the same

slation oba

ar
Ch

ol 2, Gen®®

e
vork i geomedricelly decreesirg ot eoch el
&

S[e¥) =

S+

it

cﬁ%‘”“]f—r‘ ﬁ.—_usuﬁ{ CIETS)

3 proceed in II is way,
groedy schedule, un

The Stock Market, dividends and risks

Algorithm UndominatedPoints(P, q) fnet optimal.
&+ 9 PvsZ
for each point p of P do
if q.x < p.x or q.y < p.y then Plm,n)=10
add p to §
1
return S
Each company is (x.y) (expected annual

risk, (-] riskie minates w

tinates p xp.y) if gx z px

for i=1 to m:
€ by increasing x then y PIL, O] + 1
Right Subproblem: if a point is maximal here, must be fer j=1 to mim:
maximal in B PIO, j1 + 0
aximal ir

Left Subproblem: if ot
autorr i
pin LSP, thena

20 to ¢
if n > mny
if n < ny

int is maximal here

RSP dominates

% £ill in the rest
for i=1 to m:

¥ maxi

If a point in

t g in RSP with larg

Pli, §]1 «

guarant

ate p

4. T(n) =

(n/9) +

Vilogan
SOLUTION: Here a = 3 and b =

return Blm, n]

. T(n) = /nT(n/3) +n*

. T(n) =97 (n/3) +nlogn

SOLUTION: Here a =

S0 We are in case

Dand b = 3, and so log, a -

).

T(n) = 2T (n/2) +n/logn

SOLUTION: The Master Theorem can not be used:
However there is no & > 0 such that n/logn € O(n

al salution, with orderod weights given by oy, 01,...

ardering §. That i, this is a pair of jobs that appear

oy +(n

2o +

— p{og — o) + (1

satisfaction will not decrease with each swap. Then

aP(mn—1)+(1-a)P(m—-1,n+1)

logs 9
1. This implies T(n) € B(n"=) = &(n?).

Algorithe UndominatedPoints(P, q)
S+ 0
for each poist p of P do
if q.x < pux or q.¥ < p.y then
add p to 5
roturs 5§

Mr Plow Greedy Exchange Argument

1. 5 points] Use an cachnnge asgumsent (o show that this greody strategy yickds an optimal schedue,

n. Tho weighted

(m = i)y

= in € that defi

stive 10 the order of tho greedy
differcs
Jobs by decroasing weight, we must have op

arder

Zog 4 ..o+ (0= Plog+ooeH{n—ghog + ..+ (0

after we swal
they do In

0 in O (ie., we swap the arder so thise twe

+{n - g)op+ ...+ (m—n)ou

P)iog = 05) 2 S(O),

because g > p and o, > a,. Therefore, the weighted satisfaction of C7 is at beast as high as the weighted
i

repeatedly swapping imversions between the optimal schedule and the
schedul

ed into the greedy schodule
S(E) =

The weighted
5(0) and the greedy schedule is in

ifm>0n>0
ifm=0n>0
ifm=>0n=0

Mlgorithm ProbVictory(m, n):
Initialize an (m+l)x(n+m+1) 20 array P (with zero-based indexing)

% £ill in base cases

of the table

for j=1 to (n+m-i):

asP[i, j-11 + (1-a)*P[i-1, j+]

Memory and Runtime: @(mn)+8(m*2)

9, which means logya = logg 3 = 0.5, and f(n) = ynlogyn =
nts logg n. We are therefore in case 2 of the Master theorem and T'(n) € 6(yn]u;;2 n).

SOLUTION: The Master Theorem can not be used beeause a is not a constant (it is /)

2. Moreover, f(n) = nlogn € O(n*~"%)

= 2 and b = 2, and so0 logya = log, 2 = 1.

Sl G ey 2 DP Lengest Cemmnn Substnng Problem

1es A and B is

THE KEY STAGES

1. Divide. We recursively divide the main problem into two or more smaller pieces tha
usually are of equal size. Division is done based on some criteria and that criteria coulc
depend on step 3.

2. Base Cases. Once we have divided the main problem into small enough pieces, wi L AQ.n], B
carry out the computations to solve each of those subproblems. Those computation
are usually just brute force.

3. Combine. We recursively combine the results of the two adjacent subproblems. I

rst string wh

t necessar

Bl W ALY = B

iAW) # B

doing so, we compare their results and use some criteria to build up the overall result AL LLes(AL1nT, 8
Generally, there are three cases to consider [with iii being the most typical one]:

i. the result from the first subproblem is the one we want procodure MEsoLLOS(A[L], B]1..m])

ii. the result from the second subproblem is the one we want create n 2-dimensional array Saln{0Ln)l0..r]

lize all eloments of Soln to —1
iii. the result that could be formed using elements from both subproblems is the on K‘Fl::hmﬂ:’ n]B‘[I'L:;!

we want
The work in this step should usually be done in at most linear time and often this stef™ oo IEEEANL I | eees with o check

is the most challenging one to design. & 1o sce if the Soln array alrsady contales the answer. If mot, comgte

& the answer via the rocurrence and stoee is. If so, just return the asnswen
Quicksort nfi
4 i s e " istine . Solulill] -8
function () ORT(A|L.n]) e returns the sorted amay A of v distinet numbers oo i Al] e B[] Vv
if n > 1 th e (1) Salni]ls] - Mizso-Hevren(A1 = 1], B{L 5= 1) + 1
Chesoss pivat clement p = A[1] & 8(1) wlen
T : | — = Salaillj] =
Let Lesser be an array of all clements from A less than p = E{n) el Mestc ML P (AL B, Mo Hewrem{ {12411 1)
of all clements from A greater than p = A{n) roturs Soindls]
LasserSortedd +— CruickSort{ Lesser) e To([31-1) anir | :
GreaterSorted + QuickSort(Greater) e To(l3]) ; T 08 5T 0 T [;
return the conentenation of LeserSorted, [p], and GreaterSorted e (1) [0 T 1 T
clse 00| 0] 1 i3
return = 81) [IENEN 1 |
a 2 1 2 2
I E] 2
.)) 2 3 £Y)
Recurrence relation for the runtime of QuickSort: . -
BiL.m, Saln)

& Note: Seds0n[0.m] is a liedin LLOS memoiention table foe A and |

c, ifn=00rn=1

Tg(n) = : If 1 0 or =) thoen b base case
n : i "
Tol[5] — 1)+ To(l %)) + en, otherwise. e Mass
Ignoring floors, ceilings, constants for recurrence i Afn| == Blm] thon
& the final ketters match, s, we add & detter 1o the LCS
Divide & I”uunm Expratn LOS(AlLa — i]. F{im - 1], Solu) +A[n]
Conquer E . . . - B = which pocursive eall yaclded the max?
Querall Work: O(alnem)) = 0%+ wn) on vkt f Solnfr 1jm] > Solatnllm — 1] tham

& we don't we the lsst etter of A in the solution

return EXPLAN-LCS[A[L.n ~ 1], B]1.m], Sois}
clse

= we don't e the last letter of B i the sobstica

rebiirn ExPLA-LCS(A[Ln), B[lm — 1], Sola}

Areater os owmy of all elements fum A getater fhan p. gs”{' Blm) 4o splet
QuickSort + P*Div\ oY, fesser " mmgcﬁd\l mente Gom A less than L e
IrF cl.wo;a T) -t smallest e\emevd’ s ck pwc% Ta (= 'JI'\:“, * T(,_i‘EI ‘

f [#ic) L)72 dloggni=liy 1 fll Jevels cocedure DP-LLCS[ALx], B[1.m])

Depesk 2 n ksg; ngE ltab 3 qendl For fodawinaed i'}:« creato o 2-dimensional areay Soln[0.n]|0.m]

WA ot o £ ko s el L [0 " ol auﬂ'ﬂ[nlﬁg,ﬁ) At met D[O(nlq;nj B(nlwgn) T
Interval Scheduling for & foom 0 ta m do
Set of requests {1,2,..n}; i-th request corresponds to an Find Position Divide & Conquer Soln]i][0] + 0 DP
interval of time starting at s(i) and finishing at f(i) for j from 1 to m do
Subset of requests: It’s O(n) because if the sum of the infinite geo $‘f'nI‘JIIl] = 0_
Compatible: no two of them overlap in time, and zoalseries is constant, and it occurs at every level n, :orr'"‘ ':N:“l':‘::';“g o ool i, S Bol Lo,
is to maximize compatible subset it’s c*n which is O(n) for j from 1 to m do
Optimal: compatible sets of maximum size IF Ali] = Blf] then
Select a first request i1, once accepted, reject all Salnily] + Solafi — 1] -1 + 1
requests not compatible with il. Select next request i2 Solnlilli] + max{ Sotnli — 1|l5], Sobafilli — 1] }
and repeat until out of requests to select from. return Sclujn]fm|
Solution: Accept the request that finishes first Runtime = Olmn] m is first word Length, n length of second
{request i for which f(i) is as small as possible). #subproblems for memoized and DP is Olmn)

siven a graph (¢ = [V, K} and integer & > 1, does € contain an independent matehing of Space Complaxity: Oimn}

NP Complete Problems.

1. Independent Set. For a graph G = (V, E), a subset of vertices S C V is independent
if no two vertices in S that are joined by an edge. Given a graph G and k € N, does
G contain an independent set of size k or larger?

Vertex Cover. For a graph GG = (V, E), a subset of vertices § C V is a verter cover
if every edge ¢ € E has at least one of its endpoints in §. Given a graph G and k € N,
does G contain a vertex cover of size k or smaller?

L

o

Set Packing. Given an n-element set U, a collection of subsets {5;, Sa... .. SalcU
and a mumber k € M, does there exists a collection of at least k of those sets with the
property that no two of them intersect?

4. Set Cover. Given an n-clement set I/, a collection of subsets {8, 8a.....5,} C U
and a number k € M, does there exists a collection of at most & of those sets whose
union is equal to U7

5. Cligue. For a graph G = (V, E), a subset of vertices S C V is a cligue if every pair
of vertices in V is joined by an edge. Given a graph G and k € M, does & contain a
elique of size & or larger?

=

Subset Swm. Given a set of n integers V = {uy,vo,..., 0.}, is there a subset U €V
such that 37 u; = k7

hl

Set Partition. Given a set of n integers V = {vj,v...., v, }. can the elements of V'
be partitioned into two sets U and V — U such that Eu. p= Eu.z\'—u w?

=

Graph Coloring. A graph G = (V, E) is said to be k-colorable if the endpoints of
any edge (u, v) could be colored using different colors when there is total of k available
colors. Given a graph G and k € N, does G have a k-coloring?

=

. 3D Matching. Given disjoint sets X, Y. Z each of size n, and given a set T C
X x Y x Z of ordered triples, does there exist a subset of n lnple« in T such that each
element of X UY U Z is contained in ezactly one of those triples?

10. SAT (Satisfiability).

o Let X = {ay, ..., 2,} be a set of n Boolean variables [i.e. each z; is 0 or 1].

e A term t; over X is either one of the variables z; or its negation F,.
o A clause C; of length [is a disjunction of distinet terms: C; = £, VgV -+~ V4.
o A collection of clauses is the conjuction Cy A Co A -+ A Cl.
A truth assignment is some assignment of values of 0 or 1 to each z; € X. In other
words, a truth assignment is a function f : X — [0,1]. The collection of clauses

Cy A Cy A -+ ACy is satisfiable if there exists a truth assignment that evaluates the
collection to 1.

A problem is called -SAT if the length of all of its clauses C; is exactly {.

Example 4. Master theorem doesn't apply in the following cases:

o T(n)=2"T(§) +1 [a = 2" is not a constant]

o T(n)=4T(3) +1 [a = } is not greater or equal to 1]

* T(n)=2T(n)+1 [b= 1 is not greater than 1]

o T(n)=T(5)—nlogn [fin) = —nlogn is not positive]

e Tn)=T(n=-1)+1 [recurrence is not in the right form|

e T(n)=T(3)+T(3)+1 [recurrence is not in the right form|
Aobran e Wortk \ank Space

Quick Sort : cm«a‘o O(wlogw) 00 Ollogd>
Sorks Diwiey O(ulogy D\I‘J‘&GE) 0w
Selection = 0(v") 0ln) gl 000
Tnsertion : D0 0lr) o ol
tudbvle: 0l D® 0n®> ol

Consider a class of the change-making problem for which the greedy algorithm returns an

optimal solution (that i, the cne that uses the fewest coins). What can we say about the dynamic

programming solution to this problem?

(® The dynamic programming solution will be eptimal, but generally slower than the greedy
selution

size k7 That is, is there a subset M of E with [M] = k sneh that M is an independent RG,j) =)] ifi=0orj=0
tehing? Independ hing Problem ifh= MaXgejtan (Sk—F+1+RE-LK)} fl<i<mandl<j<n.
Here we give an incomplete reduction from IMP 1o SAT (see Page 3 for o forinal definition

of SAT). Given a graph & = (V, E) with m edges, and a value k, we define the variable X; _— function IterativeMystery:

for i = 1 to m el for j = 1 to &, which represents whether the edge e is the jth element Split sub-lists
arn b] A ol e — twe until you
of the independent matching M, We de clanses as follows: If an NP problem has a reach pair of
(A) For cach integer a from 1 to k, add the clanse; polynomial number of ralues.
The clauses in (A) ensure that at exactly one possible certificates,
XNyaVXe, V...V X, , edgeisineach position of the clique. thenitisin P. It can be Step 3:
h s u Sort/swap pal
solved in polynomial time of values if
and for every 2 distinet edges o, e also add the clawse: Pecause youcan needed,
- o The clauses in (B) ensure that each edgeis Just _‘:!‘“k every f'"?le Step 4:
ia VX ja assigned to at most one position of the certificate to verify it ::'f;::::ﬂ'
independent matching. working. Polynomial repest proces
§ L num of certificates * till you merge
(13) For any edge o, and for every two dist integers a, b from 1 to k, add the clase: polynomial time to check the full list.

The clauses in (C) each.

ensure that the selected edges form a matching. Specifically, these make sure that if
e_p, e_q have a common endpoint, then at most one can be selected in the matching.
(C) For each pair of distinet edges ¢, and ¢y which share an endpoint, and for every

pair of imtegers o, b in 1 o b, oadd the elase:

Xpa ¥ Xpg-

The clauses in (D) ensure that for any 2 edges in the selected matching, there is no
X VvX " edge which connects the endpoint of one to an endpoint of the other.
e qibe

[]_)} For any P?‘Ltll of]ngtll three, indueed h}— CORSEeCEive .y]g..,; €4y B4, gy and for every Hamiltonian Cycle: cycle that visits each vertex exactly once

nian path that starts and ends at adjacent vertices

two imtegers a, b rom 1 to k, add the elase: 0 =10 ng one more edge to form a
P(m.n)] im=0 r sm a Hamiltonian
aP{m,n—1)+(1 = a)P(m ~ Ln+1) if m>0,n > 0Cycle produces a Hamiltonian
SAT — — Travelling Salesman: Given a set of cities and the distance
X ia v quf, (T b compleded,) between every pair of cities, the problem is to find the shortest
possible route that visits every city exactly once and returns to
- ™ v\:;jlou R R a Ba I T True the startin

=
& wm: ﬂus% iy ud, DL k pas\‘t‘ons For each ddftgec o bom | 4 k, add he
){[/ﬂ“xll -"Xnm
verte " Ly endpoint of every
o more. L an_dCc MB' ES:{’ion d Iﬁlfﬁlhﬂ For each fair oF L " Dominating Set For graph G, is & subset D of its vertices, such
Bir evts yo w | t0 (.',. da gV Xy a g that any vertex of G is in D, ar has a neighbor in D. The
A siale VE.H\’.X cant DCLKLP more. Ban one Poq&‘m of e Lllqut “,r eath W,l c vy for domination number (G is the number of vertices in a smallest

b dominating set for G
EVen distinet wizaed o, b faom | k, odd fhe clanse XI wV Xr, Independent Matching Problem: Given an undirected graph G =

E)ftftj WM posﬁ‘m o C'-tqut woek shart. an td.BL wf oty oher Vel m nghn o d{ For olll v, E1. a matching is a subset M of the edges E such that

If 50
Vertex Cover: A & es at least one

o, 1 each node o 1 endpoint of at most one edge in M. A
fors of veltees vy and o fhot JJ"' Share an "d‘l‘ add e tfose: K',‘ aV¥ XU Fo matching is ine dent if there is no edge (u, V) in G where u
trery o Lb /W \ L ‘_(_ and v are the endpoints of twa different edges of the
v

0(n & @rllogy :ii‘é‘:fp‘,;m -
Ton) = aT(FED) + 0(et) w>0,uv1, dz0 fhen* 11 - Olrdlogg\j it (4= logy 0
- - 0fv®™) :t (d< ldaa

output is a partition of ¥ that

// initialize table; we choose to keep the zero rows/columns
initialize a zero-indexed (m+1)=(n+l) array R

// handle base cases
Set R[i][0) = O for all i and R[OI[j] = O for all j

for i=1 to m:
for j=n to 1:

maxSoFar = -inf

for k=j to n:
val = S[k-j+1] + R[i-1][k]
if val > maxSoFar:

maxSoFar = val
R[i1[j] = maxSoFar

raturn Rim] (al i Runtime is theta((n”2)*m) time, and theta(n*m) space.

Q3.1 Greedy Algorithm
3 Paints

Briefly describe a simple greedy strateqy 1o determine a distribution of exam bundles. You must
pravide a plain English desoription of your greedy strategy, and should onty provide pseudacode if
you feel it is necessary to clarify details of your algorithm. (We suspect that if you need
pseudocode, your approach is (oo complicatad.)

Pick the bundies from left te right, starting from the first ta and giving the cusrent TA, the same
bundie unti ghving the bundie e the TA will cause itwo exceed m, If this happens, then move
onto the next TA,

“ function DETERMINISTICSELECT{A[L..n], k) // returns the element of rank k in an artay A of n
distinet numbers, where 1 <k <n

if n = 5 then
Q3 Choose pivot element p using the procedure described above
1Pa Let Lesser be an array of all elements from A bess than p
Lat Craster bo an array of all sleaonts From A grester than p

The if |Lesser| = k - 1 then
saly return p Deterministic Select
® else
Ll if |Lesser] = k - 1 then // all smaller elts are in Lesser; k is unchanged
Q| return DeterministicSelect(Lesser, k)
i else/ |Lesser| < k— 1

v // subtract from k the number of smaller elts removed

5 return DeterministicSelect(Greater, k- |Lesser| ~1)

a2 else

sort A and return Ak — 1]

Question 3.3 Give a reasonsble "groedy stays abead” lemma that you could use o prove your
algerithm is optimal. (You do not need to prove the lemma.)

Solwtion: The first k TAs in the groedy sedution will be carrying at least as many todal bundles as the
first k& TAs in the optimal solation,

