

Better for NP-completeness reductions, since it is constrained. (We will reduce from 3-SAT to problem we want to prove is NP-complete).

<mark>Steiner Problem (ST): Optimization Problem, NP Complete</mark> Given the graph below, how do we connect the shaded parts (S) with least amount of edges? Optimization problem, minimizing edges connecting.

Decision Problem: Output can be either a yes or no. For Steiner, Yes is when it connects all shaded nodes, with edge amount < k. If u specify edge amount < any other solution, is NOT a decision problem.

An Instance of ST: G = (V, E), $S \subseteq V$, and k, where $1 \leq k \leq n$. ST is good: Edges of E' (soln) connect all vertices in S, and |E'| < KST is optimal: Edges of E' (soln) connect all vertices in S, |E'| < = the size of any other solution for the instance. <u>Certifying the algorithm</u>

(1) Check that edges in E' have size at most k, (2) the edges connect all shaded in E', starting from any shaded nodes. During DFS, we "check off" all shaded nodes If |E'| <= K and all shaded notes are checked off, E' is a <u>good</u> solution (Yes). is in CLASS NP. If all nodes are shaded, is minimum spanning tree algorithm.

Vertex Cover Problem (NP-COMPLETE)

Given a graph G = (V, E) and an integer K, is there a vertex cover with at most K vertices in G? A vertex cover is a subset

W of V such that $|W| \le K$, such that every edge in E has at least one endpoint in W. In other words, ALL EDGES TOUCH A VERTEX IN W.

Dominating Set Problem (NP-COMPLETE)

Given a graph **G = (V, E)** and an **integer K**, is there a dominating set with at most K vertices in G? A dominating set is a subset W of V such that |W| ≤ K, such that every element of $\mathbf{V} - \mathbf{W}$ is joined by an edge to an element of \mathbf{W} . EVERY VERTEX NOT IN THE SUBSET, IS CONNECTED WITH AN EDGE TO ANY ELEMENT IN THE SUBSET.

Vertex Cover -> Dominating Set Reduction

Recognize that VC cares about 'covered edges', and DS cares about 'dominated nodes'. Add a node to G' for each edge in G, and attach the endpoints to it.

With K=2, both instances are "yes". With K=1, both instances are "no"

the edge in 3 -> 4 becomes 3 -> 34, 34->4, with an edge in between Isolated nodes don't have an edge, so they don't need to be part of vertex cover, but need to be part of dominating set. Therefore K' = K + #(isolated nodes in G).

Reduction: Given an instance (G, K) of Vertex Cover, construct an instance (G', K')of Dominating Set by adding one node v_e for each edge $e \in E$, and connecting this node to the endpoints of e. That is, if $e = \{x, y\}$ then we add the edges $\{v_e, x\}$ and $\{v_e, y\}$

Choose K' to be K plus the number of isolated nodes of G

Runtime: The time to generate the new nodes and edges is O(m).

Correctness: The following is a formal proof of this algorithm's correctness, using For each variable, we need to connect the shaded node between the + and -. the same "if and only if" style proof as assignment 1 question 4.3 and 4.4:

Suppose that G has a vertex cover W of size at most K. Since W is a vertex cover of <u>3</u>. Complete reduction from 3-SAT to ST such that ST instance is YES if and only if G_i (i) all non-isolated nodes in V - W are joined by an edge to the nodes of W and <u>3-SAT instance is YES also</u>. (ii) all nodes v_e are also joined by an edge to the nodes of W. So the set W' which contains all nodes of W, plus the isolated nodes of G_i is a dominating set of G' and **Nodes**: We first create a single hub node. Then, for each variable x_i of instance I, we create a node

INTER: OUTSIDE (INTER-GALACTIC), OUTSIDE OF SUBSET INTRA: INSIDE (INSIDE THE SUBSET)

Building a reduction from SAT to 3-SAT, to prove SAT is NP-Complete. (convert to problem b instance) Converting SAT instance (Prob. A) to 3-SAT instance (Prob. B)

Instance I of SAT. Instance I' of S-SAT. For reduction to work, I is satisfiable $P = \{all \text{ problems for which a } known \text{ polynomial algorithm exists}\}$

only if l' is.

 NP = {all problems for which an efficient certifier exists} Introduct the second s

replace this clause with $(\overline{X}_2 \vee X_3 \vee Y)$ and $(\overline{X}_2 \vee X_3 \vee \overline{Y})$. A truth assignment that satisfies the original clause, satisfies this one. Y is useless, since it is <u>true</u> in first and <u>false</u> in the other.

• NP-Complete = NP \cap NP-Hard

2. Imagine I has clause with 1 literal, (X_5) . Replace with $(X_5 \vee \overline{Y} \vee \overline{Z})$, Another way to write the definition of NP-Hard is $\{X : Y \leq X, \forall Y \in \text{NP}\}$. Another way to write the definition of NP-Complete is $\{X : X \in NP \text{ and } Y \leq X, \forall Y \in NP\}$

Theory

P: Can create algorithm to solve in polynomial time. NP: Can be verified in polynomial time.

can possibly not be verified in polynomial time

NP-Hard

NP-Complete

Р

If NP ≠

A <= B (A can be reduced to B), 3SAT <= Subset SUms

For a problem A to be NP-complete:

NP-complete: A problem A that's NP, in which you can reduce any other NP

P != NP No one has ever been able to solve an NP problem polynomially. If

problem B to A polynomially. It's possible to reduce any NP problem into 3-SAT.

NP-hard: A problem is as hard as every other problem in NP. NP hard problems

someone successfully does so, then ALL NP problems are solvable polynomially

1. prove A is in NP => outline steps to verify solution in polynomial time

could be reduced to in polynomial time

NP-Hard

NP-Complete = NP

If NP =

NP NP-Complete NP-Hard

р

2. prove A is in NP-hard => reduce B to A where B is NP-complete/np-hard

- $\begin{array}{l} (X_5 \lor \overline{Y} \lor Z), (X_5 \lor Y \lor \overline{Z}) \text{ and } (X_5 \lor Y \lor Z).\\ \textbf{3. Imagine I has 4 literals}, (X_1 \lor \overline{X}_2 \lor X_3 \lor X_4). \text{Replace with:}\\ (X_1 \lor \overline{X}_2 \lor Y) \land (\overline{Y} \lor X_3 \lor X_4). \end{array}$
- If one of the first two literals (i.e., X_1 or \overline{X}_2) is true, first new clause is
- satisfied. Must make Y false.
- 4. To generalize, convert any clause with k > 3 literals $(l_1 \lor l_2 \lor \ldots \lor l_k)$ Into 3 literals. Generalization:
 - $(l_1 \lor l_2 \lor X_{i+1}) \land (\bar{X}_{i+1} \lor l_3 \lor X_{i+2}) \land (\bar{X}_{i+2} \lor l_4 \lor X_{i+3}) \land \dots$
 - $\wedge (\overline{X}_{i+(j-2)} \vee l_j \vee X_{i+(j-1)}) \wedge ..$
 - $\ldots \land (\bar{X}_{i+(k-4)} \lor l_{k-2} \lor X_{i+(k-3)}) \land (\bar{X}_{i+(k-3)} \lor l_{k-1} \lor l_k)$

There are k-2 new clauses in total, using k-3 new variables $X_{i+1}, X_{i+1}, \ldots, X_{i+(k-3)}$ to "link" the clauses together. Overall, an algorithm to do this takes time $\Theta(k)$.

5. TRANFORMATION INSTANCE ALGORITHM: Use name TRANSFORM

CLAUSE to refer to algorithm. The algorithm converts an instance Lof SAT to an instance I' of 3-SAT, working clause by clause to call Solvable in Polynomial Time vertices with a DFS on the subgraph of G formed by deleting all edges but the ones TRANSFORM-CLAUSE for K > 3, and for K < 3 calling on step 1 and 2 Solution Verifiable in Polynomial Time

 SAT instance		3SAT instance
$X_3 \lor \overline{X_5}$	\Rightarrow	$\left\{\begin{array}{c}X_3\vee\overline{X_5}\vee Y_1\\X_3\vee\overline{X_5}\vee\overline{Y_1}\end{array}\right.$
$\overline{X_1} \vee X_2 \vee X_4 \vee X_5$	\Rightarrow	$\left\{\begin{array}{c} \overline{X_1} \lor X_2 \lor Y_2 \\ \overline{Y_2} \lor X_4 \lor X_5 \end{array}\right.$
$\overline{X_4}$	\Rightarrow	$\left\{ \begin{array}{l} \overline{X_4} \vee \overline{Y_3} \vee \overline{Y_4} \\ \overline{X_4} \vee \overline{Y_3} \vee \overline{Y_4} \\ \overline{X_4} \vee Y_3 \vee \overline{Y_4} \\ \overline{X_4} \vee Y_3 \vee \overline{Y_4} \\ \overline{X_4} \vee Y_3 \vee Y_4 \end{array} \right.$
$X_1 \vee \overline{X_2} \vee \overline{X_3} \vee X_4 \vee \overline{X_5} \vee \overline{X_6}$	\Rightarrow	$\begin{cases} X_1 \lor \overline{X_2} \lor Y_3 \\ \overline{Y_5} \lor \overline{X_3} \lor Y_6 \\ \overline{Y_6} \lor X_4 \lor Y_7 \end{cases}$

Reduces any NP Problem in Polynomial Time	e		√	√
More Types of Problems				
Counting Inversions (P) problem, not a decision	<u>n one.</u>	PRO	BLEMS.	RE DECISIO
Input: Array A[1n] Task: Count the number of pairs where (i < j) and number of pairs where the smaller number is al	d A[i] > nead o	• A[j]. f the l	n other words, fi arger number.	nd the
For array [1,4,3,2], the NUMBERS (4,3), (4, 2), an	d (3,2)	are ir	versions. 3 invers	sions total.
Brute Force Algorithm is O(n^2). Can count maximum of n*(n-1)/2 inversions. Can solve faster with CountInversions Divide and Conquer.	f	inve inve for	on COUNTINVERSE rsions $\leftarrow 0$ $i \in [1n]$ do for $j \in [(i + 1)n]$ if $A[i] > A[j]$ t	ONS(A[1n])
NO) to the 3-SAT			inversions ← end if	 inversions +

Counting Inversions (Divide and Conquer) end function

function CountAppendedInversions(A[1..n], B[1..m])

HELPER FUNCTION CALLED COUNTAPPENDEDINVERSIONS()

Algorithm SAT-to-3-SAT(I) takes time linear in the length of I, and the algorithm to translate the

also takes O(f(n)) time, runtime to solve problem A is also O(f(n)).

A that runs in O(g(n)) time, there **CANNOT be an SOLVING algorithm** that runs in O(g(n)) time. Remember that $P \neq NP$, so THIS IS HOW WE USE REDUCTIONS IN AN NP-COMPLETENESS PROOF.

3. Our reduction from SAT to 3-SAT tells us that if polynomial time, then ANY problem in NP can be s time.

Building a Reduction from 3-SAT to ST, to show that ST

Converting 3-SAT instance (Prob. A) to ST instance (Prob. B) If we reduce from 3-SAT to ST in polynomial time, we can "chain" together a reduction from any problem to 3-SAT with the reduction from 3-SAT to ST, to get end

a larger polynomial reduction from that problem in NP to ST. Going from ST -> 3SAT isn't interesting, since all it does is say that ST can be reduced into 3SAT end function (convert to problem b instance)

1. Given a 3-SAT instance with four variable gadgets (w, x, y, z), turn into graph, with shared hub node.

We can choose independently for each variable to go "left" (true) or "right" false.

We make k=8 so there's JUST ENOUGH edges to enforce you choosing one edge or the other.

2. Given a clause $(\overline{w} \lor \overline{x} \lor y)$, enforce it so that the tree is good if the clause is good, AND that each variable cannot be both true and false

Whichever way we connect it is what we choose for the truth value

Contains an nodes of w, puts the isolated nodes of G, is a dominating set of G and Foder, we first cleate a single min hole. This is node X_i , the minor E_i we fract a node X_i of mixtance I_i we fract a node is held X_i and no labeled X_i and X_i and each of X_i and X_i and each of X_i and each of X_i and each of X_i and X_i and each of X_i and X_i and each of X_i and X_i and each of X_i and each of X_i and X_i and each of X_i and X_i and each of X_i and each of X_i and X_i and each of X_i and each o

one endpoint in W, and so W must be a vertex cover of G. [Note: Without the extra x_i and \bar{x}_i . Also, we connect each clause node c_l to each of its literals l_1, l_2 , and l_3 . The total number v_c nodes, this part of the reduction correctness would not hold.] of edges is 4n + 3c. These nodes and edges comprise our graph G.

We let the set of "shaded" node S be the hub, the n pin nodes and the c clause nodes. So, there are n + c + 1 shaded nodes in total.

Finally, we let k = 2n + c. Make sure to state why it is polynomial as well.

Continued on Next Page...

3-SAT can be solved in olved in polynomial	if $A[i] \le B[j]$ then \triangleright $i \leftarrow i + 1$	$\boldsymbol{A}[i]$ is at least as small as any remaining element of H	3
1.5	else	$\triangleright B[j]$ is smaller than every remaining element of A	١
CT is ND Complete	inversions \leftarrow inver	sions $+(n-i+1)$	

T(n) =

Input: Two arrays A[1...n], B[1...m]

 $\text{inversions} \leftarrow 0, i \leftarrow 1, j \leftarrow 1$

while $i \le n$ and $j \le m$ do

$j \leftarrow j + 1$ end if	Given A=	2	4	10	11	14	
end while	B=	6	8	16	20		
return inversions	If (10, 6) is an invor	ion	over	(thin	. riah	t of 1	í

If (10, 6) is an inversion, everything right of 10 is also an inversion of 6, since arrays are sorted!

end for

return inversions

end for

We can use CountAppendedInversions() for a divide and conquer algorithm

for counting inversions in nlogn time. Split array in half, function CountInversions&Sort(A[1..n]) combine the two if $n \leq 1$ then arravs with our return (0, A)helper, then merge end if them mid $\leftarrow \lfloor n/2 \rfloor$ inv_L, Left \leftarrow CountInversions&Sort(A[1..mid]) back together returning the inv_R , Right \leftarrow CountInversions&Sort($A[(\operatorname{mid} + 1)..n])$ combined

 $inv_{combine} \leftarrow CountAppendedInversions(Left, Right)$ inversions of the $SortedArr \leftarrow merge(Left, Right)$ left, right, and SortedArr) combined together. return $(inv_I + inv_B + inv_{er})$

D	outoute /
1	Master Theorem Case 2:
2T(n/2) + cn	$a=2, b=2, log_{2} = 1$ T(p)

Quicksort vs Merge Sort worst case merge sort is nlogn

Quick Sort sorts the components by comparing each component with the pivot while Merge Sort splits the array into two segments

 $\overline{Y_7} \vee \overline{X_5} \vee \overline{X_6}$ (convert B solution to problem A Solution) Transform solution algorithm: This algorithm to transform a solution (YES or NO) instance I' back to a solution for I simply uses the exact same solution (YES OR NO). solution back takes O(1) time What do reductions tell us: 1. If our reduction's algo takes O(f(n)) time, and black box solver for B 2. If our reduction takes O(g(n)) time, and there is no algorithm for problem Task: Count the inversions of [A[...], B[...]] in O(n+m) time.

Optimual-Do BFS first, then let u; be any node occurring on last layer Law. Then check a (i) >Diam Overall Work: O(n(n+m)) = O(n=+ wn)

True, False, or Open Q's? For NP-COMPLETE (Tutorial 10)

If $X \leq_p X'$, X is in P and X' is in NP, then X' is in P

"if X can be reduced to X', X is P, and X' is NP, then is X' in P?

ANS: Open question. depends if P=NP or P!=NP. If P!=NP, then it is false because X' could be NP complete, and not P. If P=NP however, then it could be possible for X to be in P.

Imagine X and X' are decision problems, where both problems have Yes and No Instances.

If $X \leq_p X'$ and X is *not* in NP, then X' is not in NP.

"if X can be reduced to X', and X is NOT in NP, then X' is not in NP. SOLUTION: True. This is a hard one and requires proof. We will prove contrapositive, that if X' were in NP, then X must also be in NP.

Let f be a polynomial-time reduction from instances of X to instances of X'. Since we assume that X' is in NP, there must be an efficient certifier for X', let's call this algorithm Certifier-X'. To show that X is in NP, we construct an efficient certifier for X. This certifier takes an instance I and a certificate, say C', computes f(I), and then runs algorithm Certifier-X' on (f(I), C'). If I is a Yes-instance of X, then I' is a Yes-instance of X', and so there is some polynomial-size certificate that causes Certifier-X' to output Yes. Also, if I is a No-Instance of X, then f(I) is a No-instance of X', and Certifier-X' outputs No, no matter what the certificate is

If an NP-complete problem "subset sums" is a special case of Partition, then Partition is NP-complete, not the other way around.

The decision problem Partition takes a set of integers S, and returns yes if they can be 'partitioned' into two disjoint subsets whose union is S, such that the two subsets sum to the same value (half the sum of elements in S). Partition is in NP.

Partition is a special case of another problem, Subset Sums. There is a very nice reduction that proves that 3-SAT \leq_p Subset Sums. Again assume PI=NP

Statements This is sufficient evidence that Partition is NP-Complete.

SOLUTION: False. This special case argument is backwards. If an NP-Complete problem A is a special case of another problem B, then we can conclude B is NP-complete, not the other way around.

It turns out Partition actually is NP-Complete, but you need to do a reduction to prove that

If a problem is in NP, and P!=NP, is the problem NP-complete?

The decision problem Integer Factorization (IF) takes two numbers, n and k, and returns yes if nhas an integer factor less than k other than 1, and no otherwise. This problem is in NP. Despite researchers looking for one for a very long time, there is currently no known algorithm that solves this problem in polynomial time.

Statement: Assume P≠NP. Based on the above facts, we can conclude that IF is NP-Complete. Answer: NO, you must do a reduction to prove that it is NP-hard, and thus NP-complete.

Can SAT be solved polynomially? No, depends on if P=NP

Statement: There is no positive integer c such that boolean satisfiability (SAT) is in $O(n^c)$.

SOLUTION: Open Question. If P=NP, then every problem in NP has a polynomial time algorithm. SAT is in NP, therefore there is an algorithm that solves SAT in polynomial time. Conversely, if $P \neq NP$, then there is at least some problem in NP that does not have a polynomial time algorithm. Since SAT is NP-Complete, every problem in NP can be reduced to it in polynomial time. So, if SAT could be solved in polynomial time, then all problems in NP could be solved in polynomial time, a contradiction to our assumption that $P \neq NP$.

Long Version Master Theorem

- 1. If $f(n) \in O(n^c)$ where $c < \log_b a$ then $T(n) \in \Theta(n^{\log_b a})$. **#1**
- 2. If for some constant $k \ge 0$, $f(n) \in \Theta(n^c(\log n)^k)$ where $c = \log_b a$, then $T(n) \in \Theta(n^c(\log n)^{k+1})$. #2
- 3. If $f(n) \in \Omega(n^c)$ where $c \ge \log_b a$ and $af(\frac{n}{b}) \le kf(n)$ for some constant k < 1 and sufficiently large n, then $T(n) \in \Theta(f(n))$. #3

 $T(n) = aT(n/b) + cn^k$ Short Version given a, b, and n^k

- T(1) = c,
- $T(n) \in \Theta(n^k)$ if $a < b^k$ #3
- $T(n) \in \Theta(n^k \log n) \text{ if } a = b^k$ #2

$T(n) \in \Theta(n^{\log_b a}) \text{ if } a > b^k \#1$ Flipped Version

If $T(n) = aT(n/b) + O(n^d)$ for constants $a > 0, b > 1, d \ge 0$, then

$$T(n) = \begin{array}{cc} O(n^d) & \text{if } d > \log_b a & \texttt{#3} \\ O(n^d \log n) & \text{if } d = \log_b a & \texttt{#2} \\ O(n^{\log_b a}) & \text{if } d < \log_b a & \texttt{#1} \end{array}$$

The Master Theorem: Let $a \ge 1, b > 1$ be real constants, and let T(n) be defined by:

Case 1. If $f(n) \in O(n^{\log_b a - \epsilon})$ for some $\epsilon > 0$ then $T(n) \in \Theta(n^{\log_b a})$.

Case 2. If $f(n) \in \Theta(n^{\log_b a} \log^k n)$ for some $k \ge 0$ then $T(n) \in \Theta(n^{\log_b a} \log^{k+1} n)$.

Case 3. If $f(n) \in \Omega(n^{\log_b a + \epsilon})$ for some $\epsilon > 0$ and $af(n/b) < \delta f(n)$ for some $0 < \delta < 1^{-7}$. $T(n) = 2T(n/2) + n/\log n$ and all *n* large enough, then $T(n) \in \Theta(f(n))$.

 $T_{7}(L_{7}^{n}J) + T_{7}(\frac{5n}{2}+3) + cn$

cn

1. Draw a recursion tree, sum work done at all nodes at all levels 2. The Master Theorem, only works for specific forms of recurrence

P(I)

cn

5cr

T, (n) <

Cn 72

 $T(n) \in \Theta(n).$

Two connected components c_1 and c_2

so it cannot move any additional path

apart from the one through V. Therefore,

diameter: largest value of

smallest # of edges on any

path b/w 2 nodes (i.e. b/d, 4

n G where the only path from c_1 to C_2 goe

through V. T contains a subset of edges in G

Articulation point:

V is an articulation point.

h⇔g)

(1)

Stock market Answer

OLUTION: All that we need to do is chee

Algorithm UndominatedPoints(P, q)

9.7 p.y th

rease with each swap. Therefore, S(G) > S(O) and the greedy schedule. The weight

Memory and Runtime: $\Theta(mn)+\Theta(m^2)$

 $(\alpha P(m, n-1) + (1-\alpha)P(m-1, n+1))$ if m > 0, n > 0;

% fill in one sector for i=1 to m: for i=1 to m: for j=1 to (n+m-i): P[i, j] $\leftarrow \alpha * P[i, j-1] + (1-\alpha) * P[i-1, j+1]$ P[i, j] $\leftarrow \alpha * P[i, j-1] + (1-\alpha) * P[i-1, j+1]$

rder than they we $o_p \le o_q$. Th

if m = 0, n > 0;

if m > 0, n = 0.

if n 27

if n 47

5cn

5cn + 25cn

cn

Work at level 1

6 cm

Work at level 2

-

36 49 cn =

CASE L: INFINITE

(=)² cn

at each level <=1

Work at Pack

each

= 1/09=2

Mr Plow Greedy Exchange Argument

satisfaction for O is $|O| = \sum_{i=1}^{n} (n-1)q_i$. Let p, q, where p < q, denote indices in O that define an inversion, r ordering G. That is, this is a pair of jobs that appear in a different of the greedy strategy is to order jobs by decreasing weight, we must ha

> p and $o_q \ge o_p$. Therefore, the weighted satisfy of \mathcal{O} .

1. [5 points] Use an exchange argument to show that this greedy strategy yields an optim enote an optimal solution, with ordered weights gi ion for O is $S(O) = \sum_{i=1}^{n} (n - i)o_i$.

 $S(\mathcal{O}) = (n-1)o_1 + (n-2)o_2 + \ldots + (n-p)o_p + \ldots + (n-q)o_q + \ldots$

Let O' denote the solution obtained after we swap o_p with o_q in O (i.e., we swap the order so th elements appear in the same order as they do in G). Then

$$\begin{split} S(\mathcal{O}') &= (n-1)o_1 + (n-2)o_2 + \ldots + (n-p)o_q + \ldots + (n-q)o_p + \ldots + (n-n)o_q \\ &= S(\mathcal{O}) + (n-p)(o_q - o_p) + (n-q)(o_p - o_q) \\ &= S(\mathcal{O}) + (q-p)(o_q - o_p) \geq S(\mathcal{O}), \end{split}$$

1093

the greedy strategy is satisfaction for O is

fact optin

P vs Z

P(m,n) =

Granhs

Because work at each level

SUM OF INFINITE SERIES

ally decrea

The Stock Market, dividends and risks

Algorithm UndominatedPoints(P, q)

$$S \leftarrow \emptyset$$

for each point p of P do
if q.x < p.x or q.y < p.y the

Each company is (x,y) (expected annual dividends, -10 \leq y ≤ 10 risk, (-) riskier). Dominates when above and to the right, q = (q,x,q,y) dominates p = (p,x,p,y) if $q,x \ge p,x$

and $q.y \ge p.y$.

Sort by increasing x then y. Split 1/2.

Right Subproblem: if a point is maximal here, must be maximal in P

Left Subproblem: if a point is maximal here, not automatically maximal in P. If a point in RSP dominates p in LSP, then a point q in RSP with largest y

5.

guaranteed to dominate p 4. $T(n) = 3T(n/9) + \sqrt{n \log_2 n}$

$$T(n) = \begin{cases} aT(n/b) + f(n) & \text{if } n \ge n_0 \\ \Theta(1) & \text{if } n < n_0 \end{cases} \xrightarrow{A. T(n) = 3T(n/9) + \sqrt{n} \log_2 n} \\ \text{SOLUTION: Here } a = 3 \text{ and } b = 9, \text{ which means } \log_b a = \log_9 3 = 0.5, \text{ and } f(n) = \sqrt{n} \log_2 n = n^{0.5} \log_2 n. \end{cases}$$

$$T(n) = \sqrt{nT(n/3)} + n^2$$

SOLUTION: The Master Theorem can not be used because a is not a constant (it is \sqrt{n}).

% fill in base cases

% fill in the rest of the table

 $\begin{array}{c} \text{P[i, 0]} \leftarrow 1\\ \text{for } j=1 \text{ to } n+m:\\ \text{P[0, j]} \leftarrow 0 \end{array}$

return P[m, n]

6. $T(n) = 9T(n/3) + n \log n$

SOLUTION: Here a = 9 and b = 3, and so $\log_b a = \log_3 9 = 2$. Moreover, $f(n) = n \log n \in O(n^{2-0.5})$ so we are in case 1. This implies $T(n) \in \Theta(n^{\log_b a}) = \Theta(n^2)$.

SOLUTION: The Master Theorem can not be used: a = 2 and b = 2, and so $\log_b a = \log_2 2 = 1$. However there is no $\varepsilon > 0$ such that $n / \log n \in O(n^{1-\varepsilon})$.

Divide and Conquer	2-DP Longest Common Substring Problem	NP Complete Problems.
The Key Stages	The Longest Common Subsequence of two strings A and B is the longest string whose letters appear in	1. Independent Set. For a graph $G = (V, E)$, a subset of vertices $S \subseteq V$ is independent if a structure is in the set of the set
1. <i>Divide.</i> We recursively divide the main problem into two or more smaller pieces the	order (but not necessarily consecutively) within both A and B.	If no two vertices in S that are joined by an edge. Given a graph G and $k \in \mathbb{N}$, does G contain an independent set of size k or larger?
depend on step 3	 Given two strings A and B of length n > 0 and m > 0, we will denote the length of the LCS of J and B by LLCB(A[1n], B[1n]). Describe LLCB(A[1n], B[1n]) as a recurrence relation over 	2. Vertex Cover. For a graph $G = (V, E)$, a subset of vertices $S \subseteq V$ is a vertex cover
2. Base Cases. Once we have divided the main problem into small enough pieces. w	smaller instances. Use and generalize your work in the previous problems? $11 CS (A \Gamma(, N)] = B \Gamma(, N)$	if every edge $e \in E$ has at least one of its endpoints in S. Given a graph G and $k \in \mathbb{N}$,
carry out the computations to solve each of those subproblems. Those computation		does G contain a vertex cover of size k or smaller?
are usually just brute force.	(I + UCS(A[In-I], B[Im-I] (if A[n] = B[M])	 Set Packing. Given an n-element set U, a collection of subsets {S₁, S₂,, S_m} ⊂ U and a number k ∈ N, does there exists a collection of at least k of those sets with the
3. Combine. We recursively combine the results of the two adjacent subproblems. I	= $\frac{1}{2} + \frac{1}{2} + $	property that no two of them intersect?
doing so, we compare their results and use some criteria to build up the overall result	(IIIMA [LLCS (A [I n], B[I m-1]) other delete from	4. Set Cover. Given an n-element set U , a collection of subsets $\{S_1, S_2, \ldots, S_m\} \subset U$
Generally, there are three cases to consider [with in being the most typical one]: i the result from the first subproblem is the one we want	A or B.	and a number $k \in \mathbb{N}$, does there exists a collection of at most k of those sets whose union is equal to U?
ii. the result from the second subproblem is the one we want	create a 2-dimensional array Soln[0m][0m]	5. Clique. For a graph $G = (V, E)$, a subset of vertices $S \subseteq V$ is a clique if every pair
iii. the result that could be formed using elements from both subproblems is the on	initialize all elements of Soin to -1 MEMO-HELPER(A[1n]B[1m])	of vertices in V is joined by an edge. Given a graph G and $k\in\mathbb{N},$ does G contain a
we want	rocedure MEMO-HELPER $(A[1i], B[1j])$	clique of size k or larger?
The work in this step should usually be done in at most <i>linear</i> time and often this step is the most challenging one to design	> As always with memoization, we wrap the recurrence with a check > to see if the Soln array already contains the answer. If not, compute	6. Subset Sum. Given a set of n integers V = {v ₁ , v ₂ ,, v _n }, is there a subset U ⊆ V such that ∑ _{integ} u _i = k?
is the most chancinging one to design.	b the answer via the recurrence and store it. If so, just return the answer if Solulilli is -1 then	^e 7. Set Partition. Given a set of n integers $V = \{v_1, v_2, \dots, v_n\}$, can the elements of V
Quicksort	if $i = 0$ or $i = 0$ then Solution $i = 0$ then	be partitioned into two sets U and $V - U$ such that $\sum_{u_i \in U} u_i = \sum_{u_i \in V - U} u_i$?
infection Querkson($A_{[1n]}$) \triangleright returns the sorted array A of n distinct humbers if $n > 1$ then $\triangleright \Theta(1)$	else if $A[i] == B[j]$ then Soluil[j] \leftarrow MEMO-HELPER($A[1, i-1], B[1, j-1]) + 1$	8. Graph Coloring. A graph $G = (V, E)$ is said to be k-colorable if the endpoints of any edge (v, v) could be solved using different values when there is total of h available
Choose pivot element $p = A[1]$ $\triangleright \Theta(1)$ Let Lesser be an array of all elements from A less than p $\triangleright \Theta(n)$	else Soln[i][j] ←	colors. Given a graph G and $k \in \mathbb{N}$, does G have a k-coloring?
Let Greater be an array of all elements from A greater than p $\triangleright \Theta(n)$	max{MEMO-HELPER(A[1.i-1],B[1.j]), MEMO-HELPER(A[1.i],B[1.j-1]) return Soln[4][j]	9. 3D Matching. Given disjoint sets X, Y, Z each of size n , and given a set $T \subseteq$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		$X \times Y \times Z$ of ordered triples, does there exist a subset of <i>n</i> triples in <i>T</i> such that each element of $X \sqcup Y \sqcup Z$ is contained in <i>eractly are</i> of those triples?
return the concatenation of LesserSorted, $[p]$, and GreaterSorted $\triangleright O(1)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 SAT (Satisfiability)
return A $\triangleright \Theta(1)$	tyc 0 1 1 1 1 1 1 1 2	• Let $X = \{x_1, \dots, x_n\}$ be a set of <i>n</i> Boolean variables [i.e. each x_i is 0 or 1].
	tyco 0 1 2 2 2 2 2 2 2 tycoo 0 1 2 2 2 2 2 2	• A term t_i over X is either one of the variables x_i or its negation \overline{x}_i .
Recurrence relation for the runtime of QuickSort:	tycoon 0 1 2 2 3 3 3 3 3	• A clause C_j of length l is a disjunction of distinct terms: $C_j = t_1 \lor t_2 \lor \cdots \lor t_l$.
(procedure EXPLAIN-LCS($A[1n], B[1m], Soln$) \triangleright Note: Soln]0n][0m] is a filled-in LLCS memoization table for A and I	• A collection of clauses is the conjuction $C_1 \wedge C_2 \wedge \cdots \wedge C_k$.
$T_Q(n) = \begin{cases} c, & \text{If } n = 0 \text{ or } n = 1 \\ T_Q(n) = \int_{-\infty}^{\infty} \frac{1}{n} \int_{-\infty}^{\infty} 1$	if $n == 0$ or $m == 0$ then \triangleright base case	A truth assignment is some assignment of values of 0 or 1 to each $x_i \in X$. In other words, a truth assignment is a function $f: X \to [0, 1]$. The collection of clauses
$\left[T_Q(\lfloor \frac{n}{4} \rfloor - 1) + T_Q(\lfloor \frac{n}{4} \rfloor) + cn, \text{ otherwise.}\right]$	else Memo	$C_1 \wedge C_2 \wedge \cdots \wedge C_k$ is satisfiable if there exists a truth assignment that evaluates the
ignoring noors, ceilings, constants for recurrence	if A[n] == B[m] then > the final letters match, so, we add a letter to the LCS	collection to 1. A problem is called $LSAT$ if the length of all of its always C is quantum L
Divide & Conquer	return EXPLAIN-LCS $(A[1n - 1], B[1m - 1], Soln) + A[n]$ else	A problem is canced r -SAT if the length of an of its clauses U_j is exactly l .
Overall Work: $O(n(n+m)) = O(n^2 + mn)$	▷ which recursive call yielded the max? if $Soln[n - 1][m] \ge Soln[n][m - 1]$ then	Example 4. Master theorem doesn't apply in the following cases: • $T(n) = 2nT(\frac{n}{2}) + 1$
Divide & Conquer greater as array of all elements from A greater than p. Sont O(n) to split of the split of t	▷ we don't use the last letter of A in the solution return EXPLAIN-LCS(A[1n - 1], B[1m], Soln)	• $T(n) = 2^{-T}T(\frac{n}{2}) + 1$ [$a = 2^{-1}$ is not a constant] • $T(n) = \frac{1}{2}T(\frac{n}{2}) + 1$ [$a = \frac{1}{2}$ is not greater or equal to 1]
If chance 1-1-the swallest element as the noiset T (0) = T (1) + T (1)	else h \Rightarrow we don't use the last letter of B in the solution	• $T(n) = 2T(n) + 1$ [b = 1 is not greater than 1]
Find base case when problem (air) has size ≤ 1 (4) $n \leq 1$ (100 n ≤ 1 log n "full levels"	return EXPLAIN-LCS $(A[1n], B[1m - 1], Soln)$ rocedure DP-LLCS $(A[1n], B[1m])$	• $T(n) = T\left(\frac{n}{2}\right) - n\log n$ $[f(n) = -n\log n \text{ is not positive}]$
Deeper leaf: $(\frac{1}{4})^n \ge 1 \iff n \ge (\frac{6}{5})^c \iff \log_{\frac{6}{3}} \log_{\frac{6}{3}} n \ge 4$	create a 2-dimensional array Soln[0n][0m]	• $T(n) = T(n-1) + 1$ [recurrence is not in the right form]
We must do on work at each level from 0 to shallowest SZ[nigg_m] At most D(1) (O(nlogg_n) O(nlogn)	▷ fill in the base cases	• $T(n) = T\left(\frac{n}{2}\right) + T\left(\frac{n}{4}\right) + 1$ [recurrence is not in the right form]
Set of requests (1,2,,n); i-th request corresponds to an Find Position Divide & Conquer	for i from 0 to n do $Soln[i][0] \leftarrow 0$ DP	Best Awange Worst Worst Space
interval of time starting at s(i) and finishing at f(i).	for j from 1 to m do Solution $j = 0$	Autor Sort: O(nlogn) O(nlogn) O(nlogn) O(nlogn)
Subset of requests: It's O(n) because if the sum of the infinite geo	bill in the recursive cases column-by-column, top-to-bottom	Selection: $D(n^2)$ $D(n^2)$ $D(n^2)$
is to maximize compatible subset it's c*n which is O(n)	for i from 1 to n do for j from 1 to m do	Insertion: $O(n^2)$ $O(n^2)$ $O(n^2)$ $O(1)$
Ontimal: compatible sets of maximum size	if $A[i] = B[i]$ then	
Calacter Comparing Sets of maximum size	$Solnlillii \leftarrow Solnli - 1 i - 1 + 1$	$ \begin{array}{c} \textbf{Eubble}: \textbf{O}(n) \qquad \textbf{O}(n^2) \textbf{O}(n^2) \\ \end{array} $
Select a first request 1, once accepted, reject all requests not compatible with 11. Select next request 12	$\begin{aligned} \text{Soln}[i][j] \leftarrow \text{Soln}[i-1][j-1] + 1 \\ \end{aligned}$	EubDol: $0(n^2)$ $0(n^2)$ $0(n)$ Consider a class of the change-making problem for which the greedy algorithm returns an
Select a first request i, once accepted, reject all requests not compatible with i1. Select next request i2 and repeat until out of requests to select from.	Soln[i[j] \leftarrow Soln[i - 1][j - 1] + 1 else Soln[i[j] \leftarrow max{ Soln[i - 1][j], Soln[i][j - 1] } return Soln[n][m]	Example : $D(n^2)$ $D(n^2)$ $D(i)$ Consider a class of the change-making problem for which the greedy algorithm returns an optimal solution (that is, the one that uses the fewest coins). What can we say about the dynamic programming solution to this problem?
Select a first request is on maximum size Select a first request is on accepted, reject all requests not compatible with i1. Select next request i2 and repeat until out of requests to select from. Solution: Accept the request that finishes first	$\label{eq:solution} \begin{split} & Soln[i[j] \leftarrow Soln[i-1][j-1] + 1 \\ & else \\ & Soln[i[j] \leftarrow max\{ Soln[i-1][j], Soln[i][j-1] \} \\ & return Soln[n][m] \\ & Runtime = O(mn) m is first word length, n length of second \end{split}$	EVADOLE : $D(n^2)$ $D(n^2)$ $D(n^2)$ $O(1)$ Consider a class of the change-making problem for which the greedy algorithm returns an optimal solution (that is, the one that uses the fewest coins). What can we say about the dynamic programming solution to this problem?
Solution for the set of maximum are set of maximum are set of the	Soln[i[j] ← Soln[i - 1][j - 1] + 1 else Soln[i[j] ← max{Soln[i - 1][j], Soln[i][j - 1] } return Soln[n][m] Runtime = O(mn) m is first word length, n length of second #subproblems for memoized and DP is O(mn) Space Complexity. O(mn)	Example : D(n?) D(n?> O(n) Consider a class of the change-making problem for which the greedy algorithm returns an optimal solution (that is, the one that uses the fewest coins). What can we say about the dynamic programming solution to this problem? Image: Construct on the greedy algorithm returns an optimal, but generally slower than the greedy solution
Solution: Comparison of the formation of the set of the formation of the set of the formation of the set of t	Soln[i[j] ← Soln[i - 1][j - 1] + 1 else Soln[i[j] ← max{Soln[i - 1][j], Soln[i][j - 1] } return Soln[n][m] Runtime = O(mn) m is first word length, n length of second #subproblems for memoized and DP is O(mn) Space Complexity: O(mn)	EVALUATE: $0(n^2)$ $0(n^2)$ $0(n^2)$ $0(i)$ Consider a class of the change-making problem for which the greedy algorithm returns an optimal solution (that is, the one that uses the fewest coins). What can we say about the dynamic programming solution to this problem? (a) The dynamic programming solution will be optimal, but generally slower than the greedy solution (b) if $i = 0$ or $i = 0$
Solution: A comparison of the format in the set of the format in the format is the fo	Soln[i[j] ← Soln[i - 1][j - 1] + 1 else Soln[i[j] ← max{Soln[i - 1][j], Soln[i[j - 1] } return Soln[n][m] Runtime = O(m) m is first word length, n length of second #subproblems for memoized and DP is O(mn) Space Complexity: O(mn)	$ \begin{array}{c c} \hline \textbf{bubble} : & 0(n) & 0(n^2) & 0(n^2) \\ \hline Consider a class of the change-making problem for which the greedy algorithm returns an optimal solution (that is, the one that uses the fewest coins). What can we say about the dynamic programming solution to this problem? $
Select a first request 1, once accepted, reject all requests not compatible with 11. Select next request 12 and repeat until out of requests to select from. Solution: Accept the request that finishes first (request i for which f(i) is as small as possible). Given a graph $G = (V, E)$ and integer $k \ge 1$, does G contain an independent matching of size k? That is, is there a subset M of E with $ M = k$ such that M is an independent matching? Independent Matching Problem Here we give an incomplete reduction from IMP to SAT (see Page 3 for a formal definition	Soln[i[j] + Soln[i - 1][j - 1] + 1 else Soln[i[j] + Soln[i - 1][j - 1] + 1 else Soln[i[j] + max{ Soln[i - 1][j], Soln[i][j - 1] } return Soln[n][m] Runtime = O(m) m is first word length, n length of second #subproblems for memoized and DP is O(mn) Space Complexity: O(mn) Space Complexity: O(m)	$\begin{aligned} & \textbf{fubble}: 0(n) \qquad 0(n^2) 0(n^2) \\ & O(n) \end{aligned}$ Consider a class of the change-making problem for which the greedy algorithm returns an optimal solution (that is, the one that uses the fewest coins). What can we say about the dynamic programming solution to this problem? (a) The dynamic programming solution will be optimal, but generally slower than the greedy solution $R(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ \max_{k=j \text{ to } n} \{S[k-j+1] + R(i-1,k)\} & \text{if } 1 \le i \le m \text{ and } 1 \le j \le n. \end{cases}$
Select a first request 1, once accepted, reject all requests not compatible with 11. Select next request 12 and repeat until out of requests to select from. Solution: Accept the request that finishes first (request i for which f(i) is as small as possible). Given a graph $G = (V, E)$ and integer $k \ge 1$, does G contain an independent matching of size k? That is, is there a subset M of E with $ M = k$ such that M is an independent matching? Independent Matching Problem Here we give an incomplete reduction from IMP to SAT (see Page 3 for a formal definition of SAT). Given a graph $G = (V, E)$ with m edges, and a value k, we define the variable $X_{i,j}$	Soln[i[j] + Soln[i - 1][j - 1] + 1 else Soln[i[j] + max{Soln[i - 1][j], Soln[i[j - 1] } return Soln[n][m] Runtime = O(m) m is first word length, n length of second #subproblems for memoized and DP is O(mn) Space Complexity: O(m)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Select a first request 1, once accepted, reject all requests not compatible with 11. Select next request 12 and repeat until out of requests to select from. Solution: Accept the request that finishes first (request i for which f(i) is as small as possible). Given a graph $G = (V, E)$ and integer $k \ge 1$, does G contain an independent matching of size k ? That is, is there a subset M of E with $ M = k$ such that M is an independent matching? Independent Matching Problem Here we give an incomplete reduction from IMP to SAT (see Page 3 for a formal definition of SAT). Given a graph $G = (V, E)$ with m edges, and a value k , we define the variable $X_{i,j}$ for $i = 1$ to m and for $j = 1$ to k , which represents whether the edge e_i is the j th element of the independent matching M . We define clauser as follows:	Soln[i[j] + Soln[i - 1][j - 1] + 1 else Soln[i[j] + max{ Soln[i - 1][j], Soln[i][j - 1] } return Soln[n][m] Runtime = O(m) m is first word length, n length of second #subproblems for memoized and DP is O(mn) Space Complexity: O(m) Space Complexity: 0(m) Space Complexity: 0(m) Step 1: Splitsub-listsi Two unity our only our o	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Select a first request 1, once accepted, reject all requests not compatible with 11. Select next request 12 and repeat until out of requests to select from. Solution: Accept the request that finishes first (request i for which f(i) is as small as possible). Given a graph $G = (V, E)$ and integer $k \ge 1$, does G contain an independent matching of size k ? That is, is there a subset M of E with $ M = k$ such that M is an independent matching? Independent Matching Problem Here we give an incomplete reduction from IMP to SAT (see Page 3 for a formal definition of SAT). Given a graph $G = (V, E)$ with m edges, and a value k , we define the variable $X_{i,j}$ for $i = 1$ to m and for $j = 1$ to k , which represents whether the edge e_i is the j th element of the independent matching M . We define clauses:	Soln[i[j] + Soln[i - 1][j - 1] + 1 else Soln[i[j] + max{Soln[i - 1][j], Soln[i][j - 1] } return Soln[n][m] Runtime = O(m) m is first word length, n length of second #subproblems for memoized and DP is O(mn) Space Complexity: O(m)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Solution: A comparison of the independent Matching M is a small as possible. Given a graph $G = (V, E)$ and integer $k \ge 1$, does G contain an independent matching of size k ? That is, is there a subset M of E with $ M = k$ such that M is an independent matching? Independent Matching Problem Here we give an incomplete reduction from IMP to SAT (see Page 3 for a formal definition of SAT). Given a graph $G = (V, E)$ with m edges, and a value k , we define the variable $X_{i,j}$ for $i = 1$ to m and for $j = 1$ to k , which represents whether the edge e_i is the j th element of the independent matching M . We define clauses as follows: (A) For each integer a from 1 to k , add the clause: The clauses in (A) ensure that at exceeded.	Soln[i[j] + Soln[i - 1][j - 1] + 1 else Soln[i[j] + max{Soln[i - 1][j], Soln[i[j - 1] } return Soln[n][m] Runtime = O(m) m is first word length, n length of second Subproblems for memoized and DP is O(mn) Space Complexity: O(m)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Solution: A comparison of the set of or the subscription of the independent matching M . We define clauses a follows: (A) For each integer a from 1 to k , add the clause: $X_{1,a} \lor X_{2,a} \lor \ldots \lor X_{m,a}$	Soln[i[j] + Soln[i - 1][j - 1] + 1 else Soln[i[j] + max{Soln[i - 1][j], Soln[i[j - 1] } return Soln[n][m] Runtime = O(mn) m is first word length, n length of second #subproblems for memoized and DP is O(mn) Space Complexity: O(mn) Unit of the second memoized and DP is O(mn) Space Complexity: O(mn) If an NP problem has a polynomial number of possible certificates, then it is in P. It can be	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{l} Optimal comparison of the sets of the mathem and the sets of the sets$	Soln[i[j] ← Soln[i - 1][j - 1] + 1 else Soln[i[j] ← Soln[i - 1][j - 1] + 1 else Soln[i[j] ← max{Soln[i - 1][j], Soln[i[j - 1] } return Soln[n][m] Runtime = O(mn) m is first word length, n length of second #subproblems for memoized and DP is O(mn) Space Complexity: O(mn) Unit of the second memoized and DP is O(mn) Space Complexity: O(mn) If an NP problem has a polynomial number of polynomial number of solved in polynomial time e. Solved in polynomial time because wur can	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	Solicitij + Solaji - 1][j - 1] + 1 eks Solicitij + estali - 1][j - 1] + 1 eks Solicitij + emax{ Soliciti - 1][j], Solicitij - 1] } return Solicitij + emax{ Soliciti - 1][j], Solicitij - 1] } return Solicitij + emax{ Soliciti - 1][j], Solicitij - 1] } return Solicitij + emax{ Soliciti - 1][j], Solicitij - 1] } return Solicitij + emax{ Soliciti - 1][j], Solicitij - 1] } subproblems for memoized and DP is O(mn) Space Complexity: O(mn) if an NP problem has a polynomial number of polynomial number of solved in polynomial time because you can just check every single	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	Solip[i] + Solaji = 1][j - 1] + 1 else Solaji[j] + Solaji = 1][j - 1] + 1 else Solaji[j] + max{ Solaji = 1][j], Solaji[j] - 1] } return Solaji[m] Runtime = O(mn) m is first word length, n length of second #subproblems for memoized and DP is O(mn) Space Complexity: O(mn) If an NP problem has a polynomial number of polynomial number of polynomial number of solved in polynomial time because you can just check every single certificate to verify it subt table.	$\label{eq:solution} \begin{array}{ c c c c } \hline b(n) & b(n^2) & b(n^2) & b(i) \\ \hline consider a class of the change-making problem for which the greedy algorithm returns an optimal solution (that is, the one that uses the fewest coins). What can we say about the dynamic programming solution to this problem? (a) The dynamic programming solution will be optimal, but generally slower than the greedy solution R(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ \max_{k=j \text{ to } n} \{S[k-j+1] + R(i-1,k)\} & \text{if } 1 \leq i \leq m \text{ and } 1 \leq j \leq n. \end{cases} function IterativeMystery:// initialize table; we choose to keep the zero rows/columns initialize a zero-indexed (m+1)*(n+1) array R// handle base casesSet R[i][0] = 0 for all i and R[0][j] = 0 for all jfor i=1 to m: for j=n to 1:maxSoFar = -inf$
$\begin{split} & \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	solupility + solupi = 1][j - 1] + 1 else Solupility + esclapi = 1][j - 1] + 1 else Solupility + max{ Solu[i - 1][j], Solupi[j] - 1] } return Solupilim Runtime = O(mn) m is first word length, n length of second Bisbproblems for memoized and DP is O(mn) Space Complexity: O(mn) If an NP problem has a polynomial number of polynomial fine edge is the is in P. It can be solved in polynomial time working. Polynomial num of certificates *	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	Solip[i] + solal i - 1][j - 1] + 1 else Solip[i] + solal i - 1][j - 1] + 1 else Solip[i] + max{ Soln[i - 1][j], Soln[i][j - 1] } return Soln[n][m] Runtime = O(mn) m is first word length, n length of second Bisbproblems for memoized and DP is O(mn) Space Complexity: O(mn) If an NP problem has a polynomial number of polynomial number of polynomial number of polynomial number of polynomial time because you can just check every single certificate to verify it working. Polynomial time polynomial time to check	$\label{eq:solution} \begin{array}{ c c c c } \hline {\bf b}(n) & {\bf b}(n^2) & {\bf b}(n) \\ \hline {\bf c}(n) & {\bf c}(n^2) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n^2) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) \\$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Solicificity + Solarie - 11[j - 1] + 1 else Solaritificit + Solarie - 11[j - 1] + 1 else Solaritificit + max{ Solarie - 11[j], Solaritificit - 1] return Solaritim Subproblems for memoized and DP is Ofman Space Complexity: Ofman If an NP problem has a polynomial number of polynomial number of polynomial number of polynomial number of polynomial time because you can just check every single certificate to verify it working. Polynomial num of certificates * polynomial time to check each.	$\label{eq:solution} \begin{array}{ c c c c } \hline {\bf b}(n) & {\bf b}(n^2) & {\bf b}(n) \\ \hline {\bf c}(n) & {\bf c}(n^2) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n^2) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) & {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) & {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) & {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) & {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) & {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) & {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) & {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) & {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) & {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) & {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) & {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) & {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) & {\bf c}(n) \\ \hline {\bf c}(n) & {\bf c}(n) & {\bf c}(n) \\ \hline $
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	solupility + solupi - 1 [j - 1] + 1 else Solupility + solupi - 1 [j - 1] + 1 else Solupility + max{ Solupi - 1 [j], Solupi [j - 1] } return Solupility subproblems for memoized and DP is O(mn) Space Complexity: O(mn) If an NP problem has a polynomial number of possible certificates, the solved in polynomial time because you can just check every single certificate to verify it working. Polynomial num of certificates * polynomial time to check each. ttobing. Specifically, these make sure that if t most one can be selected in the matching.	<pre>fubble: 0(n) 0(n²) 0(n²) 0(i) Consider a class of the change-making problem for which the greedy algorithm returns an optimal solution (that is, the one that uses the fewest coins). What can we say about the dynamic programming solution will be optimal, but generally slower than the greedy solution (************************************</pre>
$ \begin{array}{l} \hline \label{eq:generalized} \hline \end{tabular} tabu$	Solicitis + Solaritis + alls - 1 s - 1 + 1 else Solaritis + Solaritis + alls - 1 s - 1 s + 1 else Solaritis + colored + ad DF is O(ma) Space Complexity: O(ma) Space Complexity: O(ma) If an NP problem has a polynomial number of possible certificates, then it is in P. It can be solved in polynomial time because you can just check every single certificate to verify it working. Polynomial num of certificates * polynomial time to check each. the solvection be selected in the matching.	<pre>fubble: 0(n) 0(n²) 0(n²) 0(i) Consider a class of the change-making problem for which the greedy algorithm returns an optimal solution (that is, the one that uses the fewest coins). What can we say about the dynamic programming solution to this problem? (*) The dynamic programming solution will be optimal, but generally slower than the greedy solution $R(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ \max_{k=j \text{ to } n} \{S[k-j+1] + R(i-1,k)\} & \text{if } 1 \le i \le m \text{ and } 1 \le j \le n. \end{cases}$ function IterativeMystery: // initialize table; we choose to keep the zero rows/columns initialize a zero-indexed (m+1)*(n+1) array R // handle base cases Set R[i][0] = 0 for all i and R[0][j] = 0 for all j for i=1 to m: for j=n to 1: maxSoFar = -inf for k=j to n: val = S[k-j+1] + R[i-1][k] if val > maxSoFar: maxSoFar = val R[i][j] = maxSoFar return R[m][n] Runtime is theta((n^2)*m) time, and theta(n*m) space. </pre>
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Solicitij + solali - 1 [j - 1] + 1 else Solalitij + max{ Solali - 1 [j], Solalitij - 1] } return Solalalitij + max{ Solali - 1 [j], Solalitij - 1] } return Solalaliti + max{ Solaliti - 1 [j], Solalitij - 1] } return Solalaliti + max{ Solaliti - 1 [j], Solalitij - 1] } return Solalaliti + max{ Solaliti - 1 [j], Solaliti - 1] } subproblems for memoized and DP is O(ma) Space Complexity: O(ma) If an NP problem has a polynomial number of possible certificates, then it is in P. It can be solved in polynomial num of certificates * polynomial time to check each. the selected matching, there is no	<pre></pre>
$\overline{X}_{p,a} \vee \overline{X}_{p,b}.$ (C) For each pair of distinct edges e_p and for every 2 distinct edges e_p and for every two distinct integers a, b in 1 to k , add the clause: $\overline{X}_{p,a} \vee \overline{X}_{p,b}.$ (G) For each pair of distinct edges e_p and for every pair of integers a, b in 1 to k , add the clause: $\overline{X}_{p,a} \vee \overline{X}_{q,b}.$ (G) For each pair of distinct edges e_p and for every $2 \text{ distinct edges } e_p$ and for every $2 \text{ distinct edges } e_p$ and for every $2 \text{ distinct edges } e_p$ and for every $2 \text{ distinct edges } e_p$ and for every $2 \text{ distinct edges } e_p$ and for every $2 \text{ distinct edges } e_p$ and for every $2 \text{ distinct edges } e_p$ and for every $2 \text{ distinct edges } e_p$ and for every two distinct integers a, b in 1 to k , add the clause: $\overline{X}_{p,a} \vee \overline{X}_{p,b}.$ (B) For each pair of distinct edges e_p and for every two distinct integers a, b in 1 to k , add the clause: $\overline{X}_{p,a} \vee \overline{X}_{p,b}.$ (B) For each pair of distinct edges e_p and for every two distinct integers a, b from 1 to k , add the clause: $\overline{X}_{p,a} \vee \overline{X}_{p,b}.$ (C) For each pair of distinct edges e_p and e_q which share an endpoint, then a explicitly every pair of integers a, b in 1 to k , add the clause: $\overline{X}_{p,a} \vee \overline{X}_{a,b}.$ (C) For each pair of distinct edges e_p and e_q which share an endpoint, then a explicitly every pair of integers a, b in 1 to k , add the clause: $\overline{X}_{p,a} \vee \overline{X}_{q,b}.$ (C) For each pair of distinct edges e_p and e_q which share an endpoint, then a explicitly every pair of integers a, b in 1 to k , add the clause: $\overline{X}_{p,a} \vee \overline{X}_{q,b}.$ (C) For each pair of distinct edges e_p and e_q which share an endpoint, then a explicitly every pair of integers a, b in 1 to k , add the clause: $\overline{X}_{p,a} \vee \overline{X}_{a,b}.$ (C) For each pair of distinct edges e_p and e_q which share an endpoint, then a explicitly every pair of integers a, b in 1 to k , add the clause: $\overline{X}_{p,a} \vee \overline{X}_{a,b}.$ (C) For each pair of distinc	Solicificity + Solariji - 1][j - 1] + 1 else Solariji + Solariji - 1][j - 1] + 1 else Solariji + Solariji - 1][j - 1] + 1 else Solariji + Solariji - 1][j - 1] + 1 return Solariji subproblems for memoized and DP is O(ma) Space Complexity: O(ma) If an NP problem has a polynomial number of possible certificates, then it is in P. It can be solved in polynomial num of certificates * the solved in polynomial num of certificates * polynomial time to check each. Step 4: Step 4: S	<pre>Gubble : 0(n) 0(n²) 0(1²) 0(1) Consider a class of the change-making problem for which the greedy algorithm returns an optimal solution that is, the one that uses the fewest coins). What can we say about the dynamic programming solution to this problem? (a) The dynamic programming solution will be optimal, but generally slower than the greedy solution (b) (n') (n') (n') (n') (n') (n') (n') (n'</pre>
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	and a set of the second sec	<pre></pre>
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	and a set of the set of	<pre></pre>
$\overline{X}_{p,a} \vee \overline{X}_{p,b}.$ (D) For any path of length three, induced by consecutive edge e_i, e_j, e_q , and for every two integers a, b from 1 to k , add the clause: $\overline{X}_{p,a} \vee \overline{X}_{q,b}.$ (D) For any path of length three, induced by consecutive edge e_i, e_j, e_q , and for every two integers a, b from 1 to k , add the clause: $\overline{X}_{p,a} \vee \overline{X}_{q,b}.$ (D) For any path of length three, induced by consecutive edges e_i, e_j, e_q , and for every two integers a, b from 1 to k , add the clause: $\overline{X}_{p,a} \vee \overline{X}_{q,b}.$	Soluritij + Soluri - 1 [j-1] + 1 else Soluritij + esoluri - 1 [j-1] + 1 else Soluritij + max{Soluri - 1 [j], Soluritij - 1] } return Soluritij + max{Soluri - 1 [j], Soluritij - 1] } return Soluritij + max{Soluri - 1 [j], Soluritij - 1] } return Soluritij + max{Soluri - 1 [j], Soluritij - 1] } suberoblems for memoized and DP is O(ma) Spece Complexity: O(m)	<pre>Gubble : 0(n) 0(n²) 0(n²) 0(i) Consider a class of the change-making problem for which the greedy algorithm returns an optimal solution (that is, the one that uses the fewest coins). What can we say about the dynamic programming solution to this problem? (a) The dynamic programming solution will be optimal, but generally slower than the greedy solution $R(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ \max_{k=j \text{ to } n} \{S[k-j+1] + R(i-1,k)\} & \text{if } 1 \le i \le m \text{ and } 1 \le j \le n. \end{cases}$ function IterativeMystery: // initialize table; we choose to keep the zero rows/columns initialize a zero-indexed (m+1)*(n+1) array R // handle base cases Set R[i][0] = 0 for all i and R[0][j] = 0 for all j for i=1 to m: for j=n to 1: maxSoFar = -inf for k=j to n: val = S[k-j+1] + R[i-1][k] if val > maxSoFar: maxSoFar = val R[i][j] = maxSoFar return R[m][n] Runtime is theta((n^2)*m) time, and theta(n*m) space. Q3.1 Greedy Algorithm 3 Points Briefly describe a simple greedy strategy to determine a distribution of exam bundles. You must provide a plain English description of your greedy strategy, and should only provide pseudocode if you (fed its necessary to darity details of your algorithm. (We suspect that if you need pseudocode is to complexed.)</pre>
$\overline{X}_{p,a} \vee \overline{X}_{p,b}.$ (D) For any path of length three, induced by consecutive edges e_i, e_j, e_q , and for every two integers a, b from 1 to k , add the clause: $\overline{X}_{p,a} \vee \overline{X}_{q,b}.$ (D) For any path of length three, induced by consecutive edges e_i, e_j, e_q , and for every two integers a, b from 1 to k , add the clause: $\overline{Y}_{p(m,n-1)+(1-q)P(m-1,n+1)}$	Solurit[j] + Solurit=1][j-1]+1 else Solurit[j] + Solurit=1][j-1]+1 else Solurit[j] + max{Solurit=1][j], Solurit[j]=1]} return Solurit[m] Runtime = O(m) m is first word length, n length of second #subproblems for memoized and DP is O(mn) Space Complexity: O(m) If an NP problem has a polynomial number of possible certificates, then it is in P. It can be solved in polynomial time because you can just check every single certificate to verify it working. Polynomial num of certificates * polynomial time to check each. the selected matching, there is no pan endpoint of the other. Hamiltonian Cycle cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices on be completed by adding one more edge to form a Hamiltonian path that starts and ends at adjacent vertices on be completed by adding one more edge to form a Hamiltonian path that starts and ends at adjacent vertices on be completed by adding one more edge to form a Hamiltonian path that starts and ends at adjacent vertices on be completed by adding one more edge to form a Hamiltonian path that starts and ends at adjacent vertices on be completed by adding one more edge to form a Hamiltonian cycle, and removing any edge from a Hamiltonian path.	<pre>Gubble : 0(n) 0(n²) 0(n²) 0(i) Consider a class of the change-making problem for which the greedy algorithm returns an optimal solution (that is, the one that uses the fewest coins). What can we say about the dynamic programming solution to this problem? (a) The dynamic programming solution will be optimal, but generally slower than the greedy solution $R(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ \max_{k=j \text{ to } n} \{S[k-j+1] + R(i-1,k)\} & \text{if } 1 \le i \le m \text{ and } 1 \le j \le n. \end{cases}$ function IterativeMystery: // initialize table; we choose to keep the zero rows/columns initialize a zero-indexed (m+1)*(n+1) array R // handle base cases Set R[i][0] = 0 for all i and R[0][j] = 0 for all j for i=1 to m: for j=n to 1: maxSoFar = -inf for k=j to n: val = S[k-j+1] + R[i-1][k] if val > maxSoFar: maxSoFar = val R[i][j] = maxSoFar return R[m][n] Runtime is theta((n^2)*m) time, and theta(n*m) space. Q3.1 Greedy Algorithm 3 Points Briefly describe a simple greedy strategy to determine a distribution of exam bundles. You must provide a plain English description of your greedy strategy, and should only provide pseudocode if you (feel its necessary to clarity details of your algorithm. (We suspect that if you need pseudocode, your approach is too complicated).</pre>
$\overline{X}_{p,a} \vee \overline{X}_{q,b}.$ (D) For any path of length three, induced by consecutive edges e_i, e_j, e_q , and for every two integers a, b from 1 to k , add the clause: $\overline{X}_{p,a} \vee \overline{X}_{q,b}.$ (D) For any path of length three, induced by consecutive edges e_i, e_j, e_q , and for every two integers a, b from 1 to k , add the clause: $\overline{X}_{i,a} \vee \overline{X}_{q,b}.$ (D) For any path of length three, induced by consecutive edges e_i, e_j, e_q , and for every two integers a, b from 1 to k , add the clause: $\overline{X}_{i,a} \vee \overline{X}_{q,b}.$ (D) For any path of length three, induced by consecutive edges e_i, e_j, e_q , and for every two integers a, b from 1 to k , add the clause: $\overline{X}_{i,a} \vee \overline{X}_{q,b}.$ (D) For any path of length three, induced by consecutive edges e_i, e_j, e_q , and for every two integers a, b from 1 to k , add the clause: $\overline{X}_{i,a} \vee \overline{X}_{q,b}.$ (D) For any path of length three, induced by consecutive edges e_i, e_j, e_q , and for every two integers a, b from 1 to k , add the clause: $\overline{X}_{i,a} \vee \overline{X}_{q,b}.$ (D) For any path of length three, induced by consecutive edges e_i, e_j, e_q , and for every two integers a, b from 1 to k , add the clause: $\overline{X}_{i,a} \vee \overline{X}_{q,b}.$ (D) For any path of length three, induced by consecutive edges e_i, e_j, e_q , and for every two integers a, b from 1 to k , add the clause: $\overline{X}_{i,a} \vee \overline{X}_{q,b}.$ (D) For any path of length three, induced by consecutive edges e_i, e_j, e_q , and for every two integers a, b from 1 to k , add the clause: $\overline{X}_{i,a} \vee \overline{X}_{q,b}.$ (D) For any path of length three, induced by consecutive edges e_i, e_j, e_q , and for every two integers a, b from 1 to k, add the clause: $\overline{X}_{i,a} \vee \overline{X}_{a,b}.$ (D) For any path of length three, induced by consecutive edges e_i, e_j, e_q , and for every two integers a, b from 1 to k, add the clause: $\overline{X}_{i,a} \vee \overline{X}_{i,b}.$	Solupility + Solupi - 1 [j-1] + 1 else Solupility + Solupi - 1 [j-1] + 1 else Solupility + max{Solupi - 1 [j], Solupility - 1] } return Solupility + max{Solupi - 1 [j], Solupility - 1] } return Solupility + max{Solupi - 1 [j], Solupility - 1] } return Solupility + max{Solupi - 1 [j], Solupility - 1] } subtroblems for memoized and DP is O(ma) Space Complexity: O(m)	Gubble : D(n) D(n ²) O(i) Consider a class of the change-making problem for which the greedy algorithm returns an optimal solution that is, the one that uses the fewest coins). What can we say about the dynamic programming solution to this problem? Image: Construct on the isomethan isometh
$\overline{X}_{p,a} \vee \overline{X}_{q,b}.$ Set of a first order of distinct edges e_p and for every two integers a, b from 1 to k , add the clause: $\overline{X}_{p,a} \vee \overline{X}_{q,b}.$ The clauses in (D) ensure that for any 2 edge e_{i}, e_{j}, e_{q} , and for every two integers a, b from 1 to k , add the clause: $\overline{X}_{i,a} \vee \overline{X}_{q,b}.$ The clauses in (D) ensure that for any 2 edge edge which connects the endpoint, of a connect the endpoint	Solupitij + Solupi - 1 [j - 1] + 1 else Solupitij + esolupi - 1 [j - 1] + 1 else Solupitij + max{Solupi - 1 [j], Solupitij - 1] } return Solupitij + max{Solupi - 1 [j], Solupitij - 1] } return Solupiti subproblems for memoized and DP is O(ma) Space Complexity: O(m)	Gubble: D(n) D(n ²) O(i) Consider a class of the change-making problem for which the greedy algorithm returns an optimal solution that is, the one that uses the fewest coins). What can we say about the dynamic programming solution to this problem? Image: Consider a class of the change-making problem for which the greedy algorithm returns an optimal solution to this problem? Image: Construct the construction of the problem? Image: Construction of the problem? Image: Construction of the problem? Image: Construction of the problem of the provide problem of the provide problem of your greedy strategy, and should only provide
$ \begin{array}{c} Optimit comparison of the comparison o$	Soluritij + Soluri - 1][j - 1] + 1 else Soluritij + max{Soluri - 1][j, Soluri - 1]; return Soluri - 1][j + max{Soluri - 1][j, Soluri - 1]} return Soluri - 1] return Soluri - 1] subproblems for memoized and DP is O(mn) Space Complexity: O(m)	Gubble: D(n) D(n ²) O(1) Consider a class of the change-making problem for which the greedy algorithm returns an optimal solution that is, the one that uses the fewest coins). What can we say about the dynamic programming solution to this problem? Image: Consider a class of the change-making problem for which the greedy algorithm returns an optimal solution to this problem? Image: Construct the construction of the problem? Image: Construction of the problem? Image: Construction of the problem? Image: Construction of the problem is constructed by algorithm returns an optimal solution Image: Construction of the problem? Image: Construction of the problem? Image: Construction of the problem is constructed by algorithm returns an optimal solution Image: Construction of the problem? Image: Construction of the problem is constructed by algorithm returns an optimal solution Image: Construction of the problem is constructed by algorithm returns an optimal solution Image: Construction of the problem is constructed by algorithm returns in the start of your algorithm. (We suspect that if you need previde code if you feel it is necessary to clarify details of your algorithm. (We suspect that if you need previde code is too complicated.) Image: Construct the provide a part of the toright, starting from the first ta and giving the current TA the same bundle to the TA will cause it to exceed m. If this happens, then move
$ \begin{aligned} & Comparison of the sets of mathematical sets of sets o$	Solupit[j + Solupi - 1][j - 1] + 1 else Solupit[j + esolupi - 1][j - 1] + 1 else Solupit[j + esolupi - 1][j], Solupit[j - 1] } return Solupit[m] Runtime = O(m) m is first word length, n length of second #subproblems for memoized and DP is O(mn) Space Complexity: O(m)	<pre>6wbblc : 0(n) 0(n²) 0(n²) 0(1) Consider a class of the change-making problem for which the greedy algorithm returns an optimal solution (that is, the one that uses the fewest coins). What can we say about the dynamic programming solution to this problem? (a) The dynamic programming solution will be optimal, but generally slower than the greedy solution $R(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ \max_{k=j \text{ to } n} \{S[k-j+1] + R(i-1,k)\} & \text{if } 1 \le i \le m \text{ and } 1 \le j \le n. \end{cases}$ function IterativeMystery: // initialize table; we choose to keep the zero rows/columns initialize a zero-indexed (m+1)*(n+1) array R // handle base cases Set R[i][0] = 0 for all i and R[0][j] = 0 for all j for i=1 to m: for j=n to 1: maxSoFar = -inf for k= j to n: val = S[k-j+1] + R[i-1][k] if val > maxSoFar: maxSoFar = val R[i][j] = maxSoFar: maxSoFar = val R[i][j] = maxSoFar: return R[m][n] Runtime is theta((n^2)*m) time, and theta(n*m) space. 03.1 Greedy Algorithm 3 Points Brielly describe a simple greedy strategy to determine a distribution of exam bundles. You must provide a plain English description of your greedy strategy, and should only provide pseudocode if you feel it is necessary to carify details of your algorithm. (We suspect that if you need pseudocode, your approach is too complicated.) Pick the bundles from left to right, starting from the first ta and giving the current TA the same bundle undle to the TA will cause it to exceed m. If this happens, then move onto the next TA. fraction DETEMINISTICSELECT(A[1n], k) // returns the element of rank k in an array A of n distinct numbers, where 1 ≤ k ≤ n if n ≥ 5 them Gais the procedure described above </pre>
$ \begin{aligned} & Comparison basis of the equation such as the equation of the equation$	Solupit[j] + Solupit=1][j-1]+1 else Solupit[j] + esolupit=1][j], Solupit[j] - 1] } return Solupit[m] Runtime = O(m) m is first word length, n length of second #subproblems for memoized and DP is O(mn) Space Complexity: O(m)	<pre>6wbblc : 0(n) 0(n²) 0(n²) 0(1) Consider a class of the change-making problem for which the greedy algorithm returns an optimal solution (that is, the one that uses the fewest coins). What can we say about the dynamic programming solution to this problem? (a) The dynamic programming solution will be optimal, but generally slower than the greedy solution $R(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ \max_{k=j \text{ to } n} \{S[k-j+1] + R(i-1,k)\} & \text{if } 1 \le i \le m \text{ and } 1 \le j \le n. \end{cases}$ function IterativeMystery: // initialize table; we choose to keep the zero rows/columns initialize a zero-indexed (m+1)*(n+1) array R // handle base cases Set R[i][0] = 0 for all i and R[0][j] = 0 for all j for i=1 to m: for j=n to 1: maxSoFar = -inf for k= j to n: val = S[k-j+1] + R[i-1][k] if val > maxSoFar: maxSoFar = val R[i][j] = maxSoFar: maxSoFar = val R[i][j] = maxSoFar: return R[m][n] Runtime is theta((n^2)*m) time, and theta(n*m) space. 03.1 Greedy Algorithm 3 Points Briefly describe a simple greedy strategy to determine a distribution of exam bundles. You must provide a plain English description of your greedy strategy, and should only provide pseudocode if you feel it is necessary to carify details of your algorithm. (We suspect that if you need pseudocode, your approach is too complicated.) Pick the bundles from left to right, starting from the first ta and giving the current TA the same bundle unuil giving the bundle to the TA will cause it to exceed m. If this happens, then move onto the next TA. function DETEMMINISTICSELECT(A[1n], k) // returns the element of rank k in an array A of n distinct numbers, where 1 ≤ k ≤ n if n ≥ 5 then O3.1 Groeedy tot dement p using the procedure described above if on the next TA. function DETEMMINISTICSELECT(A[1n], k) // returns the element of rank k in an array A of n distinct number</pre>
$\begin{aligned} \hline \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Solicificity is solar in 1 [j = 1] + 1 else Solar[j] + solar i = 1 [j = 1] + 1 else Solar[j] + max{ Solar[i = 1][j], Solar[i] = 1] } return Solar[i]m Runtime = 0 (mn) m is first word length, n length of second #subproblems for memoized and DF is 0 (mn) Space Complexity: 0 (mn) if an NP problem has a polynomial number of possible certificates, then it is in P. It can be solved in polynomial time because you can just check every single certificate to verify it working. Polynomial num of certificates * polynomial time to check each. the solved matching, there is no polynomial time to check each. the solved matching, there is no polynomial to the matching. Hamiltonian path that starts and ends at adjacent vertices of an endpoint of the other. Hamiltonian cycle, excle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices of an endpoint of the other. Hamiltonian cycle mole matching and the starts polynomial time to file and the starts of an endpoint of the other. Hamiltonian cycle and removing any edge from a Hamiltonian of cycle produces a Hamiltonian path. Travelling Salesman: Given a set of cites and the distance between every pair of cites, the problem is a special case of the travelling Salesman problem, obtained by setting the distance between two crites to one if they are adjacent and two otherwise, and verifying that the total distance travelled is conbe could be out the visits every city eacel does and the distance between two crites to che if they are adjacent at two otherwise, and verifying that the total distance travelled is comber two crites is a finantionian cycle possible or of the visits the total distance travelled is comber two crites is a finantionian cycle were cover. A set of vertices that include at least one the set one of the or of the or the starts	<pre>Gubble : D(n) D(n²) O(1²) O(1) Consider a class of the change-making problem for which the greedy algorithm returns an optimal solution (that is, the one that uses the fewest coins). What can we say about the dynamic programming solution to this problem? (a) The dynamic programming solution will be optimal, but generally slower than the greedy solution $R(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ \max_{k=j \text{ to } n} \{S[k-j+1] + R(i-1,k)\} & \text{if } 1 \le i \le m \text{ and } 1 \le j \le n. \end{cases}$ function IterativeMystery: // initialize table; we choose to keep the zero rows/columns initialize a zero-indexed (m+1)*(n+1) array R // handle base cases Set R[i][0] = 0 for all i and R[0][j] = 0 for all j for i=1 to m: for j=n to 1: maxSoFar = -inf for k= j to n: val = S[k-j+1] + R[i-1][k] if val > maxSoFar: maxSoFar = val R[i][j] = maxSoFar return R[m][n] Runtime is theta((n^2)*m) time, and theta(n*m) space. Q3.1 Greedy Algorithm 3Points Briefly describe a simple greedy strategy to determine a distribution of exam bundles. You must provide a plain English description of your greedy strategy, and should only provide pseudocode if you feel it is necessary to clarify details of your algorithm. (We suspect that if you need pseudocode, your approach is too complicated.) Pick the bundles from left to right, starting from the first ta and giving the current TA the same bundle undle to the TA will cause it to exceed m. If this happens, then move onto the next TA. fraction DETEXMINISTICSELECT(A[1n], k) // returns the element of rank k in an array A of n distinct numbers, where 1 ≤ k ≤ n if n ≥ 5 then O3.: Choose pivot element p using the procedure described above text Lesser to an array of all elements from A greater than p</pre>
$ \begin{array}{c} \label{eq:spectral} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Solupility + Solupi - 1][j - 1] + 1 else Solupility + Solupi - 1][j - 1] + 1 else Solupility + Solupi - 1][j, Solupility - 1] } return Solupility subproblems for memoized and DF is Ofmal Space Complexity: Ofmal F an NP problem has a polynomial number of possible certificates, then it is in P. It can be solved in polynomial time because you can just check every single certificate to verify it working. Polynomial num of certificates * polynomial time to check each. them is selected matching, there is no polynomial time to check each. the selected matching, there is no polynomial path that starts and ends at adjacent vertices of the selected matching, there is no polynomial to the other. Hamiltonian cycle, and removing any edge from a Hamiltonian of yote produces a Hamiltonian path. Traveling Saleman: Given a set of cites and the distance between every part of cites, the problem is a special case of the traveling Saleman: Given a set of cites and the distance between every part of cites the problem is a special case of the traveling Saleman: Given a set of cites and the distance between every part of cites, the problem is a special case of the traveling Saleman: Given a set of cites and the distance between two cites to one if they are adjacent and two chemistry and verying that the total distance travelied is con be completed by adding one mere days to from a Hamiltonian cycle problem is a special case of the traveling saleman problem, obtained by setting the distance between two cites to cone if they are adjacent at two chemistry adverying that the total distance travelied is cone be cone if the order is a subset D of its vertices, such the starting point the starting poin	Gubble: D(n²) D(n²) D(n²) D(n) Consider a class of the change-making problem for which the greedy algorithm returns an optimal solution that is, the one that uses the fewest coins). What can we say about the dynamic programming solution to this problem? Image: Construction of the problem? Image: Construction of the problem? Image: Construction of the problem? Image: Construction of the problem? Image: Construction of the problem? Image: Construction of the problem? Image: Construction of the problem? Image: Construction of the problem? Image: Construction of the problem? Image: Construction of the problem? Image: Construction of the problem? Image: Construction of the problem? Image: Construction of the problem? Image: Construction of the problem? Image: Construction of the problem? Image: Construction of the problem? Image: Construction of the problem? Image: Construction of the problem? Image: Construction of the problem? Image: Construction of the problem? Image: Construction of the problem? Image: Construction of the problem? Image: Construction of the problem? Image: Construction of the problem? Image: Construction of the problem? Image: Construction of the problem? Image: Construction of the problem? Image: Construction of the problem? Image: Construction problem?
$ \begin{array}{c} \label{eq:select a first request 1, once accepted, reject all requests request 1, once accepted, reject all requests request 1, once accepted, reject all requests not compatible with il. Select next request 12 and repeat until out of requests to select from. Solution: Accept the request that finishes first (request 1 for which f(0 is as small as possible). \\ \hline Given a graph G = (V, E) and integer k \geq 1, does G contain an independent matching of size k? That is, is there a subset M of E with M = k such that M is an independent matching? Independent Matching Problem \\ \hline Here we give an incomplete reduction from IMP to SAT (see Page 3 for a formal definition of SAT). Given a graph G = (V, E) with m edges, and a value k, we define the variable X_{ij} for i = 1 to m and for j = 1 to k, which represents whether the edge e_i is the jth element of the independent matching M. We define clauses as follows: (A) For each integer a from 1 to k, add the clause: X_{1,a} \lor X_{2,a} \lor \ldots \lor X_{m,a} The clauses in (A) ensure that at exceed ge is in each position of the clique and for every 2 distinct edges e_i, e_j also add the clause: \overline{X}_{i,a} \lor \overline{X}_{j,a}. The clauses in (B) ensure that each assigned to at most one position of independent matching. (B) For any edge e_p and for every two distinct integers a, b from 1 to k, add the clause: \overline{X}_{p,a} \lor \overline{X}_{p,b}. The clauses in (C) ensure that for any 2 edg \overline{X}_{p,a} \lor \overline{X}_{q,b}. The clauses in (D) ensure that for any 2 edg \overline{X}_{p,a} \lor \overline{X}_{q,b}. The clauses in (D) ensure that for any 2 edg \overline{X}_{p,a} \lor \overline{X}_{q,b}. The clauses in (D) ensure that for any 2 edg \overline{X}_{p,a} \lor \overline{X}_{q,b}. The clauses in (D) ensure that for any 2 edg \overline{X}_{p,a} \lor \overline{X}_{q,b}. The clauses in (D) ensure that for any 2 edg \overline{X}_{p,a} \lor \overline{X}_{q,b}. The clauses in (D) ensure that for any 2 edg \overline{X}_{p,a} \lor \overline{X}_{q,b}. The clauses in (D) ensure that for any 2 edg \overline{X}_{p,a} \lor \overline{X}_{q,b}. The clauses in (D) ensure that for any 2 edg \overline{X}_{p,a} \lor \overline{X}_{q$	Solupility + Solupi - 1][j - 1] + 1 else Solupility + Solupi - 1][j - 1] + 1 else Solupility + Solupi - 1][j, Solupility - 1] } return Solupility subproblems for memoized and DF is Ofmal Space Complexity: Ofmal Fan NP problem has a polynomial number of possible certificates, then it is in P. It can be solved in polynomial time because you can just check every single certificate to verify it working. Polynomial num of certificates * polynomial time to check each. Step 3: Step 4: Merge and Sou of values. Step 4: Merge and Sou of values. Merge and Sou of values. Step 4: Merge and Sou of values. Merge and Sou of values.	<pre></pre>
Consistence of the independent matching of size k? That is, is there a subset M of E with $ M = k$ such that M is an independent matching of size k? That is, is there a subset M of E with $ M = k$ such that M is an independent matching? Independent Matching Problem Here we give an incomplete reduction from IMP to SAT (see Page 3 for a formal definition of SAT). Given a graph $G = (V, E)$ with m edges, and a value k, we define the variable $X_{i,j}$ for $i = 1$ to m and for $j = 1$ to k, which represents whether the edge e_i is the jth element of the independent matching M. We define clauses as follows: (A) For each integer a from 1 to k, add the clause: $X_{1,a} \lor X_{2,a} \lor \ldots \lor X_{m,a}$ The clauses in (A) ensure that each assigned to at most one position of the clique and for every 2 distinct edges e_i, e_j also add the clause: $\overline{X}_{i,a} \lor \overline{X}_{j,a}$. The clauses in (B) ensure that each assigned to at most one position of independent matching. (B) For any edge e_p and for every two distinct integers a, b from 1 to k , add the clause: $\overline{X}_{p,a} \lor \overline{X}_{p,k}$. The clauses in (B) ensure that for any 2 edge $\overline{X}_{p,a} \lor \overline{X}_{q,k}$. (C) For each pair of distinct edges e_i and e_q which share an endpoint, and for every pair of integers a, b in 1 to k , add the clause: The clauses in (D) ensure that for any 2 edge $\overline{X}_{p,a} \lor \overline{X}_{q,k}$. (D) For any path of length three, induced by consecutive edges e_i, e_j, e_q , and for every two integers a, b from 1 to k , add the clause: The clauses in (D) ensure that for any 2 edge $\overline{X}_{p,a} \lor \overline{X}_{q,k}$. Start by straducing $n, wanables, X_{i,j}$ where $n \in V $ and $\overline{X}_{i,j}$ edurates whether we revex is a straduct $\overline{X}_{i,j} \lor \overline{X}_{q,k}$. No more from 1 to k, add the clause: No more from 1 to k, add the clause: No more from 1 to k, where $X_{i,j}$ where $n \in V $ and $\overline{X}_{i,j}$ edurates where v_i vertex is a straduce of the clique. Clapse of size k. A were wather be a edu, of be positions for each strater a from	Solupiji + Solupi - 1][j - 1] + 1 else Solupiji + Solupi - 1][j - 1] + 1 else Solupiji + Solupi - 1][j, Solupiji - 1] } return Solupiji + max{ Solupi - 1][j, Solupiji - 1] } return Solupiji + max{ Solupi - 1][j, Solupiji - 1] } return Solupiji + max{ Solupi - 1][j, Solupiji - 1] } subproblems for memoized and DF is Otmol Space Complexity: Otmol is an NP problem has a polynomial number of possible certificates, then it is in P. It can be solved in polynomial time because you can just check every single certificate to verify it working. Polynomial num of certificates * polynomial time to check each. them is selected matching, there is no pan endpoint of the other. Hamiltonian cycle, and removing any edge from a Hamiltonian of yole for a Hamiltonian of yole for a Hamiltonian of yole for a Hamiltonian of yole for a Hamiltonian poth the starting Saleman Ziven a yole form a Hamiltonian of yole for a Hamiltonian poth the starting Saleman Ziven a yole form a Hamiltonian of yole for a Hamiltonian of yole for a Hamiltonian of yole for column a subset D of its setting sub- for the matching for a subset D of its vertices, such the starting point the starting point of the tother. Treveling Saleman pothem to tai a subset D of its vertices, such the starting point the starting point the starting point of yole produces a Hamiltonian poth the starting point the starting p	$\frac{k \sqrt{b} (k \cdot (n_{k}) - (n_{k}) - (n_{k}) - (n_{k}) - (n_{k})}{(n_{k})}$ Consider a class of the change-making problem for which the greedy algorithm returns an optimal solution (that is, the one that uses the fewest coins). What can we say about the dynamic programming solution will be optimal, but generally slower than the greedy solution $R(i, j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ \max_{k=j} to n \{S[k-j+1] + R(i-1,k)\} & \text{if } 1 \le i \le m \text{ and } 1 \le j \le n. \end{cases}$ function IterativeMystery: // initialize table; we choose to keep the zero rows/columns initialize a zero-indexed (m+1)*(n+1) array R // handle base cases Set R(i][0] = 0 for all i and R[0][j] = 0 for all j for i=1 to m: for j=n to 1: maxSoFar = -inf for k=j to n: val = S[k-j+1] + R[i-1][k] if val > maxSoFar: maxSoFar = val R[i][j] = maxSoFar return R[m][n] Runtime is theta((n^2)*m) time, and theta(n*m) space. Q3.1 Greedy Algorithm 3 Points Briefly describe a simple greedy strategy to determine a distribution of exam bundles. You must provide a plain English description of your greedy strategy, and should only provide pseudocode if you feel its normset to your agrond have it to exceed m. If this happens, then move onto the next TA. Munction DETERMINISTICSELECT(A[1.n], k) // returns the element of rank k in an array A of m disting the bundle to the TA will cause it to exceed m. If this happens, then move onto the mat TA. Munction DETERMINISTICSELECT(A[1.n], k) // returns the element of rank k in an array A of m disting the bundle to the TA will cause it to exceed m. If this happens, then move onto the next TA. Munction DETERMINISTICSELECT(A[1.n], k) // returns the element of rank k in an array A of m disting the thord is the TA will cause it to exceed m. If this happens, then move onto the next TA. Munction DETERMINISTICSELECT(A[1.n], k) // returns the element of rank k in an array A of m disting the thore is k \leq n
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Solupility + Solupi - 1][j - 1] + 1 else Solupility + estanti - 1][j - 1] + 1 else Solupility + estanti - 1][j], Solupility - 1] } return Solupility subproblems for memoized and DF is Otmol Space Complexity: Otmol If an NP problem has a polynomial number of possible certificates, then it is in P. It can be solved in polynomial time because you can just check every single certificate to verify it working. Polynomial num of certificates * polynomial time to check each. the selected matching, there is no pan endpoint of the other. Hamiltonian cycle cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle and termoving my deg from a Hamiltonian of yote produces a Hamiltonian path. Traveling Salesman Given a set of cites and the distance betwee every pair of cites, the problem is a special case of the traveling salesman problem obtained by setting the distance betwee every pair of cites and the distance travelled is equal to n. If so, the route is a special case of the traveling Salesman Civen a set of cites and the distance betwee new pair of cites is the problem is a final than and verifying that the total distance travelled is equal to n. If so, the route is a special case of the travelling salesman problem, obtained by setting the distance the starting point. Travelling Salesman problem is a special case of the travelling salesman problem of the indudes at least one ordenint of every edge of the that indudes at least one ordenint of every edge of the short between two cites to vertices in a samelle oninating set for 6 In deependent Matching Problem is of the short bravelle of V is the number of vertices in a smalles formating set for 6 of the start and end of the short bravelle of V is the number of vertices in a smalles formating set for 6 of the start and end the start be to the deg V is the number of vertices in a smalles formating set for 6 of the start and end the start be to the fore of	for j=n to 1: maxSoFar = -inf for isi to m: for j=n to 1: maxSoFar = -inf for j=n to 1: maxSoFar = -inf for k=j to n: val = S[k_j+1] + R[i-1][k] if val > maxSoFar = val R[i][j] = maxSoFar Q3.1 Greedy Algorithm 3 Points Description of your greedy strategy, and should only provide pseudocode if you feel its necessary to clarify details of your algorithm. (We suspect that if you need pseudocode, your approach is too complicated). Pick the bundles from left to right, starting from the first ta and giving the current Ta the same bundle until giving the bundle to the Ta will cause it to exceed m. if this happens, then move onto the next TA. function DETERDINGSTEREDET(A[1], k) // returns the element of rank k in an array A of n distinct numbers, where 1 ≤ k ≤ n if [Lesser] > k - 1 then return p
$\begin{aligned} & \text{Points Comparison of the Soft Mathematical Solution Accept the request that finishes first (request if or which f(i) is as small as possible). \\ & \text{Given a graph } G = (V, E) \text{ and integer } k \geq 1, \text{ does } G \text{ contain an independent matching of Soft.} (Siven a graph G = (V, E) with m \text{ edges, and a value } k, we define the variable X_{i,j} for i = 1 to m and for j = 1 to k, which represents whether the edge e_i is the jth element of the independent matching M. We define clauses as follows:(A) For each integer a from 1 to k, add the clause:X_{1,a} \lor X_{2,a} \lor \ldots \lor X_{m,a} The clauses in (A) ensure that a \exp X_{1,a} \lor X_{j,a}. The clauses in (B) ensure that a \exp X_{1,a} \lor X_{j,a}.The clauses in (B) ensure that each assigned to at most one position of the clique and for every 2 distinct edges e_i, e_j also add the clause:\overline{X}_{i,a} \lor \overline{X}_{j,a}. The clauses in (B) ensure that each assigned to at most one position of independent matching.(B) For any edge e_p and for every two distinct integers a, b from 1 to k, add the clause:\overline{X}_{p,a} \lor \overline{X}_{p,b}. The clauses in (C) ensure that the selected edges form a me e_p, e_q have a common endpoint, then a_{-p}, e_q have a common endpoint, then a_{-p}, e_q have a common endpoint, then a_{-p} as \overline{X}_{q,b}.(D) For any path of length three, induced by consecutive edges e_i, e_j, e_q, and for every two integers a, b from 1 to k, add the clause:\overline{X}_{p,a} \lor \overline{X}_{q,b}.(D) For any path of length three, induced by consecutive edges e_i, e_j, e_q, and for every two integers a, b from 1 to k, add the clause:P(m,n) = \begin{cases} 0 & (m-1) & (m-1,n+1) & (m-1) $	Solupility + Solupi - 1 [j - 1] + 1 else Solupility + esolupi - 1 [j - 1] + 1 else Solupility + max{Solupi - 1 [j], Solupility - 1] } return Solupility subproblems for memoized and DF is Otmol Space Complexity: Otmol If an NP problem has a polynomial number of possible certificates, then it is in P. It can be solved in polynomial time because you can just check every single certificate to verify it working. Polynomial num of certificates * polynomial time to check each. the solved in the method second second solved in polynomial num of certificates * polynomial time to check each. the solved in the selected in the matching. Step 4: Merge and so or values. Step 4: Merge and so or values.	<pre> for i=1 to m: for j=n to 1: maxSoFar = -inf for j=n to 1: maxSoFar = -unl R[i][j] = maxSoFar return R[m][n] Runtime is theta((n^2)*m) time, and theta(n*m) space. return R[m][n] Runtime is theta((n^2)*m) time, and theta(n*m) space. return R[m][n] Runtime is theta((n^2)*m) time, and theta(n*m) space. return R[m][n] Pick the bundles to deam to rough tatalise to a simple greedy strategy to determine a distribution of exam bundles. You must provide a plain English description of your greedy strategy, and should only provide pseudocode f you feel it is necessary to clarify details of your algorithm. (We suspect that if you need pseudocode, your approach is too complicated.) Pick the bundles ton left to right, starting from the first ta and giving the current TA the same bundles mode to the TA will cause it to exceed m. If this happens, then move on to the next TA. function DETERNITISTICELECT(A[1n], k) // returns the element of rank k in an array A of n distinct numbers, where 1 ≤ k ≤ n fi [Lesser] > k - 1 then return DeterministicSelect((Greater, k) dese // is abtract from k the number of smaller els removed return DeterministicSelect((Greater, k) dese // Lesser < k + 1 then return DeterministicSelect((Greater, k) (Lesser - 1) // subtract from k the number of smaller els r</pre>
Contact comparison of the set of main size as a contrast comparation of the set of the	Solupility + Solupi - 1][j - 1] + 1 else Solupility + max{ Solupi - 1][j, Solupility - 1] } return Solupility + max{ Solupi - 1][j, Solupility - 1] } return Solupility + max{ Solupi - 1][j, Solupility - 1] } return Solupility + max{ Solupi - 1][j, Solupility - 1] } subproblems for memoized and DP is Otmo Space Complexity: Otmoi f an NP problem has a polynomial number of polynomial time because you can just check every single certificate to verify it working. Polynomial num of certificates * polynomial time to check each. then it is in P. It can be solved in polynomial meded. Step 4: Merge and sol of values: the unit of certificates * polynomial time to check each. the selected matching, there is no pan endpoint of the other. Hamiltonian cycle cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle and tensoving any edge from 4 Hamiltonian polynomian time Step as to find the shorter postible route that visits every city exactly once and returns to the starting Saleman Civen a set of cities and the distance between every pair of cities, the problem is to find the shorter postible route that visits every city exactly once and returns to the starting Saleman problem, total distance travelled is equal to n. If so, the route is a special case of the travelling salesman problem, total distance travelled is equal to n. If so, the route is a shaellooin to. The ontherwise, and verifying that the total distance travelled is equal to n. If so, the route is a shaellooin to. The dominating set for eard N, is a subset D of its vertices in a smalles dominating set for 60 is the under of vertices in a smalles dominating set for 60 is the under of vertices in a smalles dominating M.	<pre> for i=1 to m: for j=n to 1: maxSoFar = -inf for j=0 if i = 0 for all j for i=1 to m: for j=n to 1: maxSoFar = -inf for j=n to 1: maxSoFar = -inf for j=n to 1: maxSoFar = -inf for j=n to 1: maxSoFar = val R[i][j] = maxSoFar return R[m][n] R[i][j] = maxSoFar return R[m][n] Rutime is theta((n^2)*m) time, and theta(n*m) space. gains for i=1 to m: for j=n to 1: maxSoFar return R[m][n] For the dynamic programming solution to the first ta and giving the current IA the same bundle undle to the TA will cause it to exceed m. if this happens, then move onto the next TA. for i=1 to m: for j=n to 1: maxSoFar return R[m][n] For the dynamic programming is during from the first ta and giving the current IA the same bundle undle to the TA will cause it to exceed m. if this happens, then move onto the next TA. for the original is of your algorithm. (We suspect that if you need periode a plan english description of your algorithm. (We suspect that if you med periode a plan english description of your algorithm. (We suspect that if you med periode a plan english description of your algorithm. (We suspect that if you med periode a plan english description of your algorithm. (We suspect that if you need periode a plan english description of your algorithm. (We suspect that if you need periode a plan english description of your algorithm. (We suspect that if you need periode a plan english description of your algorithm. (We suspect that if you need periode a plan english description of your algorithm. (We suspect that if you need periode a plan english description of your algorithm. (We suspect that if you need periode a plan</pre>
$\begin{aligned} & Constants comparison states and comparison state state of the independent state of the independent state of the independent state of the independent state is a state of the independent state is a state of the independent matching of size k? That is, is there a subset M of E with M = k such that M is an independent matching?Independent Matching ProblemHere we give an incomplete reduction from IMP to SAT (see Page 3 for a formal definition of SAT). Given a graph G = (V, E) with m edges, and a value k, we define the variable X_{i,j} for i = 1 to m and for j = 1 to k, which represents whether the edge e_i is the jth element of the independent matching M. We define clauses as follows:(A) For each integer a from 1 to k, add the clause:X_{1,a} \lor X_{2,a} \lor \ldots \lor X_{m,a}and for every 2 distinct edges e_i, e_j also add the clause:\overline{X}_{i,a} \lor \overline{X}_{j,a}.The clauses in (A) ensure that at each assigned to at most one position of independent matching.(B) For any edge e_p and for every two distinct integers a, b form 1 to k, add the clause:\overline{X}_{p,a} \lor \overline{X}_{p,b}.The clauses in (B) ensure that for any 2 edge \overline{X}_{p,a} \lor \overline{X}_{q,b}.(D) For any path of length three, induced by consecutive edges e_i, e_j, e_q, and for every two integers a, b from 1 to k, add the clause:\overline{X}_{i,a} \lor \overline{X}_{q,b}.(D) For any path of length three, induced by consecutive edges e_i, e_j, e_q, and for every two integers a, b from 1 to k, add the clause:\overline{X}_{i,a} \lor \overline{X}_{q,b}.(D) For any path of length three, induced by consecutive edges e_i, e_j, e_q, and for every two integers a, b from 1 to k, add the clause:\overline{X}_{i,a} \lor \overline{X}_{q,b}.(D) For any path of length three, induced by consecutive edges e_i, e_j, e_q, and for every two integers a, b from 1 to k, add the clause:\overline{X}_{i,a} \lor \overline{X}_{q,b}.(To be completed.)(D) For any path of length three, induced by consecutive edges e_i, e_j, e_q, and for every two integers a, b from 1 to k, add t$	Solupiji + Solupi - 1 j - 1 + 1 else Solupiji + esolupi - 1 j - 1 + 1 else Solupiji + max{ Solupi - 1 j , Solupiji - 1 } return Solupiji subproblems for memoized and DF is Otmol Space Complexity: Otmol If an NP problem has a polynomial number of possible certificates, then it is in P. It can be solved in polynomial time because you can just check every single certificate to verify it working. Polynomial num of certificates * polynomial time to check each. the selected matching, there is no pan endpoint of the other. Hamiltonian path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian poth that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle archolem path. Traveling Salesman Diven path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle archolem path. Traveling Salesman Diven as to foldes and the distance between every path of they are adjacent networks of the starting Salesman Diven as to foldes and the distance between two dists every city exactly once and returns to the starting point. Traveling Salesman problem, obtained by setting the distance between two dists own city cathe undured as the antitonian cycle produces a Hamiltonian path. Traveling Salesman problem, obtained by setting the distance between two dists to very city exactly once and returns to the starting point. The Themiltonian cycle archolem is a special case of the traveling salesman problem, obtained by setting the distance between two dists to very city exactly once and returns to the starting point.	