

CPSC 447

Week 2: Nested Model

Analysis Framework

- domain situation
- -who are the target users?
- abstraction
 - -translate from specifics of domain to vocabulary of vis • what is shown? data abstraction
 - why is the user looking at it? task abstraction
- idiom
 - -how is it shown?
 - · visual encoding idiom: how to draw
 - interaction idiom: how to manipulate
- algorithm
- efficient computation

design	Visual encoding/interaction idiom Justify design with respect to alternatives		🕹 valid
computer science	Algorithm Measure system time/memory Analyze computational complexity	₽	technique- work
cognitive psychology	Analyze results qualitatively Measure human time with lab experiment (<i>lab study</i>)		
anthropology/ ethnography	Observe target users after deployment (<i>field study</i>) Measure adoption		

Week 2: Data Abstraction

Semantics

- semantics: real-world meaning
- data types: structural or mathematical interpretation of data -item, link, attribute, position, (grid) -different from data types in programming!

Data types

- item: individual entity, discrete
- eg patient, car, stock, city - "independent variable"
- attribute: property that is
- measured, observed, logged...
- -eg height, blood pressure for patient
- -eg horsepower, make for car
- -"dependent variable"
- links
- express relationship between two items -eg friendship on facebook, interaction between proteins positions
- -spatial data: location in 2D or 3D
- -pixels in photo, voxels in MRI scan, latitude/longitude
- grids
- -sampling strategy for continuous data

Geometry

(design study)

- shape of items
- explicit spatial positions / regions
- points, lines, curves, surfaces, volumes boundary between computer graphics
- and visualization -graphics: geometry taken as given
- -vis: geometry is result of a design decision

→ Fields (Continuous) → Geometry (Spatial) Grid of pos 7. 1 Collections Collections how we group items sets – unique items, unordered lists - ordered, duplicates possible clusters -groups of similar items Data Types → Items → Attributes → Positions → Grids → Links which classes of values & measurements? categorical (nominal) - compare equality - no implicit ordering ordered – ordina less/greater than defined -quantitative meaningful magnitude arithmetic possible Attribute Types → Categorical → Ordered → Ouantitative +-→ Ordina Ordering Direction → Sequential → Diverging → Cyclic Dataset Availability → Static → Dynamic ••••••• translate from domain-specific language to generic visualization language identify dataset type(s), attribute types identify cardinality -how many items in the dataset? -what is cardinality of each attribute? • number of levels for categorical data • range for quantitative data consider whether to transform data

FULL LIST OF DATASET TYPES

Networks & Fields

Grids

Networks

Positions

Attributes

Trees

Links

Attributes

Items (nodes)

Geometry

Positions

→ Spatia

Items

Clusters,

Items

Sets, Lists

Tables

Items

Attributes

-guided by understanding of task

	м	D		3		U
	Order ID	Order Date	Order Priority	Product Container	Product Base Margin	Ship Date
	3	10/14/06	5-Low	Large Box	0.8	10/21/
	6	2/21/08	4-Not Specified	Small Pack	0.55	2/22/
anto novicel	32	7/16/07	2-High	Small Pack	0.79	7/17/
categoricai	32	7/16/07	2-High	Jumbo Box	0.72	7/17/
ordinal	32	7/16/07	2-High	Medium Box	0.6	7/18/
	32	7/16/07	2-High	Medium Box	0.65	7/18/
quantitative	35	10/23/07	4-Not Specified	Wrap Bag	0.52	10/24/
	35	10/23/07	4-Not Specified	Small Box	0.58	10/25/
	36	11/3/07	1-Urgent	Small Box	0.55	11/3/
	65	3/18/07	1-Urgent	Small Pack	0.49	3/19/

Data Model vs Conceptual Models

- data model
- -mathematical abstraction
 - sets with operations, eg floats with * / +
 - variable data types in programming languages
- conceptual model
- -mental construction (semantics)
- -supports reasoning
- typically based on understanding of tasks [stay tuned!]
- data abstraction process relies on conceptual model -for transforming data if needed

11-

 \bigotimes

1 1 Т2 1 13 2.0 Log Erro T4 Т5 La L B 2 -Discriminability: How many usable steps?

Cleveland & McGill's Results

Week 3: Marks and Channels II

Separability vs. Integrality Width Red Hue (Color) + Height + Green ••• 1 . ** Some interference Some/significant Major interference 3 groups total: integral area 4 groups total: 2 groups each integral hue

• •

...

--

many channels

direction

but not all!

tilted pairs

-tilt, size, shape,

proximity, shadow

parallel line pairs do not pop out from

- -how long does it take?
- parallel processing on many individual
- -speed independent of distractor count speed depends on channel and amount of difference from distractors
- serial search for (almost all) combinations -speed depends on number of distractors

Factors affecting accuracy

• common scale / alignment

intensity

Physical Intensity

 perceptual system mostly operates with relative judgements, not absolute -that's why accuracy increases with common frame/scale and alignment

Week 4: Tables I and II

